

 JSON-LD 1.1 Processing Algorithms and API

 W3C Recommendation
 16 July 2020

 Gregg Kellogg; Dave Longley, Digital Bazaar; Pierre-Antoine Champin, LIRIS - Université de Lyon

 [image: W3C main logo]

 Note: this EPUB edition does not represent the authoritative text of the specification; please consult the original document on the W3C Web Site.

 Copyright
 © of the original documents: 16 July 2020 W3C® (MIT, ERCIM,
 Keio, Beihang).

 All right reserved. W3C liability,
 trademark,
 and document use rules apply.

 [image: W3C] JSON-LD 1.1 Processing Algorithms and API

 W3C Recommendation
 16 July 2020

 	This version:
	
 https://www.w3.org/TR/2020/REC-json-ld11-api-20200716/

	Latest published version:
	
 https://www.w3.org/TR/json-ld11-api/

 	Latest editor's draft:
	https://w3c.github.io/json-ld-api/

 	Test suite:
	https://w3c.github.io/json-ld-api/tests/

 	Implementation report:
	
 https://w3c.github.io/json-ld-api/reports/

 	Previous version:
	https://www.w3.org/TR/2020/PR-json-ld11-api-20200507/

 	Previous Recommendation:
	https://www.w3.org/TR/2014/REC-json-ld-api-20140116/

 	Editors:

 	Gregg Kellogg (v1.0 and v1.1)
	Dave Longley
 (Digital Bazaar)
 (v1.1)
	Pierre-Antoine Champin
 (LIRIS - Université de Lyon)
 (v1.1)

 	
 Former editors:

	Markus Lanthaler
 (Google)
 (v1.0)
	Manu Sporny
 (Digital Bazaar)
 (v1.0)

 	
 Authors:

	Dave Longley
 (Digital Bazaar)
 (v1.0 and v1.1)
	Gregg Kellogg (v1.0 and v1.1)
	Markus Lanthaler
 (Google)
 (v1.0)
	Manu Sporny
 (Digital Bazaar)
 (v1.0)
	Niklas Lindström (v1.0)

 	Participate:
	
 GitHub w3c/json-ld-api

	
 File a bug

	
 Commit history

	
 Pull requests

 Please check the
 errata for any errors or
 issues reported since publication.

 See also

 translations.

 This document is also available in this non-normative format:
 EPUB

 Copyright
 ©
 2010-2020

 W3C® (MIT,
 ERCIM, Keio,
 Beihang).
 W3C liability,
 trademark and permissive document license rules
 apply.

Abstract

 This specification defines a set of algorithms for programmatic transformations
 of JSON-LD documents. Restructuring data according to the defined transformations
 often dramatically simplifies its usage. Furthermore, this document proposes
 an Application Programming Interface (API) for developers implementing the
 specified algorithms.

 This specification describes a superset of the features defined in
 JSON-LD 1.0 Processing Algorithms And API [JSON-LD10-API]
 and, except where noted,
 the algorithms described in this specification are fully compatible
 with documents created using JSON-LD 1.0 [JSON-LD10].

Status of This Document
This section describes the status of this
 document at the time of its publication. Other documents may supersede
 this document. A list of current W3C publications and the latest revision
 of this technical report can be found in the
 W3C technical reports index at
 https://www.w3.org/TR/.

 This document has been developed by the
 JSON-LD Working Group and was derived from the JSON-LD Community Group's Final Report.

 There is a
 live JSON-LD playground that is capable
 of demonstrating the features described in this document.

 This specification is intended to supersede the JSON-LD 1.0 Processing Algorithms And API [JSON-LD10-API] specification.

 This document was published by the JSON-LD Working Group as a
 Recommendation.

 GitHub Issues are preferred for
 discussion of this specification.

 Alternatively, you can send comments to our mailing list.
 Please send them to
 public-json-ld-wg@w3.org
 (archives).

 Please see the Working Group's
 implementation report.

 This document has been reviewed by W3C Members, by software developers, and
 by other W3C groups and interested parties, and is endorsed by the Director
 as a W3C Recommendation. It is a stable document and may be used as
 reference material or cited from another document. W3C's role in making the
 Recommendation is to draw attention to the specification and to promote its
 widespread deployment. This enhances the functionality and interoperability
 of the Web.

 This document was produced by a group
 operating under the
 W3C Patent Policy.

 W3C maintains a
 public list of any patent disclosures
 made in connection with the deliverables of
 the group; that page also includes
 instructions for disclosing a patent. An individual who has actual
 knowledge of a patent which the individual believes contains
 Essential Claim(s)
 must disclose the information in accordance with
 section 6 of the W3C Patent Policy.

 This document is governed by the
 1 March 2019 W3C Process Document.

 Set of Documents

 This document is one of three JSON-LD 1.1 Recommendations produced by the
 JSON-LD Working Group:

 	JSON-LD 1.1

 	JSON-LD 1.1 Processing Algorithms and API

 	JSON-LD 1.1 Framing

Table of Contents
	1. Introduction	1.1 How to Read this Document
	1.2 Contributing
	1.3 Typographical conventions
	1.4 Terminology
	1.5 Example Conventions

	2. Features	2.1 Expansion
	2.2 Compaction
	2.3 Flattening
	2.4 RDF Serialization/Deserialization

	3. Conformance
	4. Context Processing Algorithms	4.1 Context Processing Algorithm
	4.2 Create Term Definition
	4.3 Inverse Context Creation
	4.4 Term Selection

	5. Expansion Algorithms	5.1 Expansion Algorithm
	5.2 IRI Expansion
	5.3 Value Expansion

	6. Compaction Algorithms	6.1 Compaction Algorithm
	6.2 IRI Compaction
	6.3 Value Compaction

	7. Flattening Algorithms	7.1 Flattening Algorithm
	7.2 Node Map Generation
	7.3 Merge Node Maps
	7.4 Generate Blank Node Identifier

	8. RDF Serialization/Deserialization Algorithms	8.1 Deserialize JSON-LD to RDF Algorithm
	8.2 Object to RDF Conversion
	8.3 List to RDF Conversion
	8.4 Serialize RDF as JSON-LD Algorithm
	8.5 RDF to Object Conversion
	8.6 Data Round Tripping

	9. The Application Programming Interface	9.1 The JsonLdProcessor Interface
	9.2 RDF Dataset Interfaces
	9.3 The JsonLdOptions Type
	9.4 Remote Document and Context Retrieval
	9.5 HTML Content Algorithms
	9.6 Error Handling

	10. Security Considerations
	11. Privacy Considerations
	12. Internationalization Considerations
	A. IDL Index
	B. Open Issues
	C. Changes since 1.0 Recommendation of 16 January 2014
	D. Changes since JSON-LD Community Group Final Report
	E. Changes since Candidate Release of 12 December 2019
	F. Changes since Candidate Release of 05 March 2020
	G. Changes since Proposed Recommendation Release of 7 May 2020
	H. Acknowledgements
	I. References	I.1
 Normative references

	I.2
 Informative references

 1. Introduction
This section is non-normative.

 This document is a detailed specification of the JSON-LD processing algorithms.
 The document is primarily intended for the following audiences:

 	Software developers who want to implement the algorithms to transform
 JSON-LD documents.

 	Web authors and developers who want a very detailed view of how
 a JSON-LD Processor operates.

 	Developers who want an overview of the proposed JSON-LD API.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC8259]. You must also understand the
 JSON-LD syntax defined in the JSON-LD 1.1 Syntax specification [JSON-LD11], which is the base syntax used by all
 of the algorithms in this document. To understand the API and how it is
 intended to operate in a programming environment, it is useful to have working
 knowledge of the JavaScript programming language [ECMASCRIPT] and
 WebIDL [WEBIDL]. To understand how JSON-LD maps to RDF, it is helpful to be
 familiar with the basic RDF concepts [RDF11-CONCEPTS].

 1.1 How to Read this Document
This section is non-normative.

 This document is a detailed specification for a serialization of Linked
 Data in JSON. The document is primarily intended for the following audiences:

 	Software developers who want to implement processors and APIs for
 JSON-LD

 A companion document, the JSON-LD 1.1 specification
 [JSON-LD11], specifies the grammar of JSON-LD documents.

 To understand the basics in this specification you must first be familiar with
 JSON, which is detailed in [RFC8259].

 This document can highlight changes since the JSON-LD 1.0 version.
 Select to changes.

 1.2 Contributing
This section is non-normative.

 There are a number of ways that one may participate in the development of
 this specification:

 	Technical discussion typically occurs on the public mailing list:
 public-json-ld-wg@w3.org

 	The working group uses #json-ld
 IRC channel is available for real-time discussion on irc.w3.org.

 	The #json-ld
 IRC channel is also available for real-time discussion on irc.freenode.net.

 1.3 Typographical conventions
This section is non-normative.

 The following typographic conventions are used in this specification:

 	markup
	
 Markup (elements, attributes, properties),
 machine processable values (string, characters, media types),
 property name,
 or a file name is in red-orange monospace font.

 	variable
	
 A variable in pseudo-code or in an algorithm description is in italics.

 	definition
	
 A definition of a term, to be used elsewhere in this or other specifications,
 is in bold and italics.

 	definition reference
	
 A reference to a definition in this document
 is underlined and is also an active link to the definition itself.

 	markup definition reference
	
 A references to a definition in this document,
 when the reference itself is also a markup, is underlined,
 red-orange monospace font, and is also an active link to the definition itself.

 	external definition reference
	
 A reference to a definition in another document
 is underlined, in italics, and is also an active link to the definition itself.

 	 markup external definition reference
	
 A reference to a definition in another document,
 when the reference itself is also a markup,
 is underlined, in italics red-orange monospace font,
 and is also an active link to the definition itself.

 	hyperlink
	
 A hyperlink is underlined and in blue.

 	[reference]
	
 A document reference (normative or informative) is enclosed in square brackets
 and links to the references section.

 	Changes from Recommendation
	
 Sections or phrases changed from the previous Recommendation
 may be highlighted using a control
 in § 1.1 How to Read this Document.

Note
Notes are in light green boxes with a green left border and with a "Note" header in green.
 Notes are always informative.

 Example 1

 Examples are in light khaki boxes, with khaki left border,
and with a numbered "Example" header in khaki.
Examples are always informative. The content of the example is in monospace font and may be syntax colored.

Examples may have tabbed navigation buttons
to show the results of transforming an example into other representations.

 1.4 Terminology

 This document uses the following terms as defined in external specifications
 and defines terms specific to JSON-LD.

 Terms imported from Other Specifications

Terms imported from ECMAScript Language Specification [ECMASCRIPT], The JavaScript Object Notation (JSON) Data Interchange Format [RFC8259], Infra Standard [INFRA], and Web IDL [WEBIDL]

	array
	
 In the JSON serialization,
 an array structure is represented as square brackets surrounding zero or more values.
 Values are separated by commas.
 In the internal representation,
 a list (also called an array) is an ordered collection of zero or more values.
 While JSON-LD uses the same array representation as JSON,
 the collection is unordered by default.
 While order is preserved in regular JSON arrays,
 it is not in regular JSON-LD arrays unless specifically defined
 (see the Sets and Lists section of JSON-LD 1.1.

 	boolean
	
 The values true and false that are used
 to express one of two possible states.

 	JSON object
	
 In the JSON serialization,
 an object structure
 is represented as a pair of curly brackets surrounding zero or more name/value pairs (or members).
 A name is a string.
 A single colon comes after each name,
 separating the name from the value.
 A single comma separates a value from a following name.
 In JSON-LD the names in an object must be unique.
 In the internal representation a JSON object is described as a
 map (see [INFRA]),
 composed of entries with key/value pairs.

 In the Application Programming Interface,
 a map is described using a [WEBIDL] record.

 	null
	
 The use of the null value within JSON-LD
 is used to ignore or reset values.
 A map entry in the @context where the value,
 or the @id of the value, is null,
 explicitly decouples a term's association with an IRI.
 A map entry in the body of a JSON-LD document
 whose value is null
 has the same meaning as if the map entry was not defined.
 If @value, @list, or @set is set to null in expanded form,
 then the entire JSON object is ignored.

 	number
	
 In the JSON serialization, a number
 is similar to that used in most programming languages,
 except that the octal and hexadecimal formats are not used and that leading zeros are not allowed.
 In the internal representation,
 a number is equivalent to either a long
 or double,
 depending on if the number has a non-zero fractional part (see [WEBIDL]).

 	scalar
	
 A scalar is either a string, number, true, or false.

 	string
	
 A string
 is a sequence of zero or more Unicode (UTF-8) characters,
 wrapped in double quotes, using backslash escapes (if necessary).
 A character is represented as a single character string.

Terms imported from Internationalized Resource Identifiers (IRIs) [RFC3987]

	IRI
	
 The absolute form of an IRI containing a scheme along with a path
 and optional query and fragment segments.

 	IRI reference
	
 Denotes the common usage of an Internationalized Resource Identifier.
 An IRI reference may be absolute or
 relative.
 However, the "IRI" that results from such a reference only includes absolute IRIs;
 any relative IRI references are resolved to their absolute form.

 	relative IRI reference
	
 A relative IRI reference is an IRI reference that is relative to some other IRI,
 typically the base IRI of the document.
 Note that properties,
 values of @type,
 and values of terms defined to be vocabulary relative
 are resolved relative to the vocabulary mapping,
 not the base IRI.

Terms imported from RDF 1.1 Concepts and Abstract Syntax [RDF11-CONCEPTS], RDF Schema 1.1 [RDF-SCHEMA], and Linked Data Design Issues [LINKED-DATA]

	base IRI
	
 The base IRI is an IRI established in the context,
 or is based on the JSON-LD document location.
 The base IRI is used to turn relative IRI references into IRIs.

 	blank node
	
 A node in a graph that is neither an IRI,
 nor a literal.
 A blank node does not contain
 a de-referenceable identifier because it is either ephemeral in nature
 or does not contain information that needs to be linked to from outside of the linked data graph.
 In JSON-LD,
 a blank node is assigned an identifier starting with the prefix _:.

 	blank node identifier
	
 A blank node identifier
 is a string that can be used as an identifier for a blank node within the scope of a JSON-LD document.
 Blank node identifiers begin with _:.

 	dataset
	
 A dataset
 representing a collection of RDF graphs
 including exactly one default graph and zero or more named graphs.

 	datatype IRI
	
 A datatype IRI is an IRI identifying a datatype that determines how the lexical form maps to a
 literal value.

 	default graph
	
 The default graph of a dataset is an RDF graph having no name, which may be empty.

 	graph name
	
 The IRI or blank node identifying a named graph.

 	language-tagged string
	
 A language-tagged string
 consists of a string and a non-empty language tag
 as defined by [BCP47].
 The language tag must be well-formed
 according to section 2.2.9 Classes of Conformance of [BCP47].
 Processors may normalize language tags to lowercase.

 	Linked Data
	
 A set of documents, each containing a representation of a linked data graph or dataset.

 	list
	
 A list is an ordered sequence of IRIs, blank nodes, and literals.

 	literal
	
 An object expressed as a value such as a string or number.
 Implicitly or explicitly includes a datatype IRI and, if the datatype is rdf:langString, an optional language tag.

 	named graph
	
 A named graph
 is a linked data graph that is identified by an IRI or blank node.

 	node
	
 A node in an RDF graph, either the subject and object of at least one triple.
 Note that a node can play both roles (subject and object) in a graph, even in the same triple.

 	object
	
 An object is a node in a linked data graph
 with at least one incoming edge.

 	property
	
 The name of a directed-arc in a linked data graph.
 Every property is directional
 and is labeled with an IRI or a blank node identifier.
 Whenever possible, a property should be labeled with an IRI.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 Also, see predicate in [RDF11-CONCEPTS].

 	RDF graph
	
 A labeled directed graph,
 i.e., a set of nodes connected by directed-arcs.
 Also called linked data graph.

 	resource
	
 A resource denoted by an IRI, a blank node or literal representing something in the world (the "universe of discourse").

 	subject
	
 A subject is a node in a linked data graph
 with at least one outgoing edge,
 related to an object node through a property.
	triple
	
 A component of an RDF graph including a subject, predicate, and object, which represents
 a node-arc-node segment of an RDF graph.

JSON-LD Specific Term Definitions

	active context
	
 A context that is used to resolve terms
 while the processing algorithm is running.

 	base direction
	
 The base direction is the direction used when a string does not have a direction associated with it directly.
 It can be set in the context using the @direction key
 whose value must be one of the strings "ltr", "rtl", or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	compact IRI
	
 A compact IRI has the form of prefix:suffix
 and is used as a way of expressing an IRI without needing to define separate term definitions
 for each IRI contained within a common vocabulary identified by prefix.

 	context
	
 A set of rules for interpreting a JSON-LD document
 as described in the The Context section of JSON-LD 1.1,
 and normatively specified in the Context Definitions section of JSON-LD 1.1.

 	default language
	
 The default language is the language used when a string does not have a language associated with it directly.
 It can be set in the context using the @language key
 whose value must be a string representing a [BCP47] language code or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 	default object
	
 A default object is a map that has a @default key.

 	expanded term definition
	
 An expanded term definition is a term definition
 where the value is a map
 containing one or more keyword keys to define the associated IRI,
 if this is a reverse property,
 the type associated with string values, and a container mapping.
 See the Expanded Term Definition section of JSON-LD 1.1 for a normative description.

 	frame
	
 A JSON-LD document,
 which describes the form for transforming another JSON-LD document
 using matching and embedding rules.
 A frame document allows additional keywords and certain map entries
 to describe the matching and transforming process.

 	graph object
	
 A graph object represents a named graph
 as the value of a map entry within a node object.
 When expanded, a graph object must have an @graph entry,
 and may also have @id, and @index entries.
 A simple graph object
 is a graph object which does not have an @id entry.
 Note that node objects may have a @graph entry,
 but are not considered graph objects if they include any other entries.
 A top-level object consisting of @graph is also not a graph object.
 Note that a node object may also represent a named graph it it includes other properties.
 See the Graph Objects section of JSON-LD 1.1 for a normative description.

 	id map
	
 An id map is a map value of a term
 defined with @container set to @id.
 The values of the id map must be node objects,
 and its keys are interpreted as IRIs representing
 the @id of the associated node object.
 If a value in the id map contains a key expanding to @id,
 its value must be equivalent to the referencing key in the id map.
 See the Id Maps section of JSON-LD 1.1 for a normative description.

 	included block
	
 An included block is an entry in a node object where the key is either @included or an alias of @included
 and the value is one or more node objects.
 See the Included Blocks section of JSON-LD 1.1 for a normative description.

 	index map
	
 An index map is a map value of a term
 defined with @container set to @index,
 whose values must be any of the following types:
 string,
 number,
 true,
 false,
 null,
 node object,
 value object,
 list object,
 set object, or
 an array of zero or more of the above possibilities.
 See the Index Maps section in JSON-LD 1.1 for a formal description.

 	JSON literal
	
 A JSON literal is a literal where the associated datatype IRI is rdf:JSON.
 In the value object representation, the value of @type is @json.
 JSON literals represent values which are valid JSON [RFC8259].
 See the The rdf:JSON Datatype section in JSON-LD 1.1 for a normative description.

 	JSON-LD document
	
 A JSON-LD document is a serialization of
 an RDF dataset.
 See the JSON-LD Grammar section in JSON-LD 1.1 for a formal description.

 	JSON-LD internal representation
	
 The JSON-LD internal representation
 is the result of transforming a JSON syntactic structure
 into the core data structures suitable for direct processing:
 arrays, maps, strings, numbers, booleans, and null.

 	JSON-LD Processor
	
 A JSON-LD Processor is a system which can perform the algorithms defined in JSON-LD 1.1 Processing Algorithms and API.
 See the Conformance section in JSON-LD 1.1 API for a formal description.

 	JSON-LD value
	
 A JSON-LD value is a string,
 a number,
 true or false,
 a typed value,
 or a language-tagged string.
 It represents an RDF literal.

 	keyword
	
 A string that is specific to JSON-LD,
 described in the Syntax Tokens and Keywords section of JSON-LD 1.1,
 and normatively specified in the Keywords section of JSON-LD 1.1,

 	language map
	
 An language map is a map value of a term
 defined with @container set to @language,
 whose keys must be strings representing [BCP47] language codes
 and the values must be any of the following types:
 null,
 string, or
 an array of zero or more of the above possibilities.
 See the Language Maps section of JSON-LD 1.1 for a normative description.

 	list object
	
 A list object is a map that has a @list key.
 It may also have an @index key, but no other entries.
 See the Lists and Sets section of JSON-LD 1.1 for a normative description.

 	local context
	
 A context that is specified with a map,
 specified via the @context keyword.

 	node object
	
 A node object represents zero or more properties of a node in the graph
 serialized by the JSON-LD document.
 A map is a node object
 if it exists outside of the JSON-LD context and:

 	it does not contain the @value, @list, or @set keywords, or

 	it is not the top-most map in the JSON-LD document
 consisting of no other entries than @graph and @context.

 The entries of a node object whose keys are not keywords are also called properties of the node object.
 See the Node Objects section of JSON-LD 1.1 for a normative description.

 	prefix
	
 A prefix is the first component of a compact IRI
 which comes from a term that maps to a string that,
 when prepended to the suffix of the compact IRI,
 results in an IRI.

 	processing mode
	
 The processing mode defines how a JSON-LD document is processed.
 By default, all documents are assumed to be conformant with this specification.
 By defining a different version using the @version entry in a context,
 publishers can ensure that processors conformant with JSON-LD 1.0 [JSON-LD10]
 will not accidentally process JSON-LD 1.1 documents, possibly creating a different output.
 The API provides an option for setting the processing mode to json-ld-1.0,
 which will prevent JSON-LD 1.1 features from being activated,
 or error if @version entry in a context is explicitly set to 1.1.
 This specification extends JSON-LD 1.0
 via the json-ld-1.1 processing mode.

 	scoped context
	
 A scoped context is part of an expanded term definition using the
 @context entry. It has the same form as an embedded context.
 When the term is used as a type, it defines a type-scoped context,
 when used as a property it defines a property-scoped context.

 	set object
	
 A set object is a map that has an @set entry.
 It may also have an @index key, but no other entries.
 See the Lists and Sets section of JSON-LD 1.1 for a normative description.

 	term
	
 A term is a short word defined in a context
 that may be expanded to an IRI.
 See the Terms section of JSON-LD 1.1 for a normative description.

 	term definition
	
 A term definition is an entry in a context,
 where the key defines a term
 which may be used within a map
 as a key, type, or elsewhere that a string is interpreted as a vocabulary item.
 Its value is either a string (simple term definition),
 expanding to an IRI,
 or a map (expanded term definition).

 	type map
	
 A type map is a map value of a term
 defined with @container set to @type,
 whose keys are interpreted as IRIs
 representing the @type of the associated node object;
 the value must be a node object, or array of node objects.
 If the value contains a term expanding to @type,
 its values are merged with the map value when expanding.
 See the Type Maps section of JSON-LD 1.1 for a normative description.

 	typed value
	
 A typed value consists of a value,
 which is a string,
 and a type,
 which is an IRI.

 	value object
	
 A value object is a map that has an @value entry.
 See the Value Objects section of JSON-LD 1.1 for a normative description.

 	vocabulary mapping
	
 The vocabulary mapping is set in the context using the @vocab key
 whose value must be an IRI, a compact IRI, a term, or null.
 See the Context Definitions section of JSON-LD 1.1 for a normative description.

 1.4.1 Algorithm Terms

 The Following terms are used within specific algorithms.

 	active graph
	
 The name of the currently active graph that the processor should use when processing.

 	active property
	
 The currently active property or keyword that the processor should use when processing.
 The active property is represented in the original lexical form,
 which is used for finding coercion mappings in the active context.

 	add value

 	
 Used as a macro within various algorithms as a way to add a value
 to an entry in a map (object) using a specified key.
 The invocation may include an as array flag defaulting to false.

 	If as array is true
 and the value of key in object does not exist
 or is not an array, set it to a new array
 containing any original value.

 	If value is an array,
 then for each element v in value,
 use add value recursively to add v to key in entry.

 	Otherwise:

 	If key is not an entry in object,
 add value as the value of key in object.

 	Otherwise

 	If the value of the key entry in object is not an array,
 set it to a new array containing the original value.

 	Append value
 to the value of the key entry in object.

 	IRI compacting

 	
 Used as a macro within various algorithms as to reduce the language used to describe
 the process of compacting a string var representing an IRI or keyword
 using an active context either specified directly, or coming from the scope of
 the algorithm step using this term.
 An optional value is used, if explicitly provided.
 Unless specified, the vocab flag defaults to true,
 and the reverse flag defaults to false.

 	Return the result of using the IRI Compaction algorithm,
 passing active context,
 var,
 value (if supplied),
 vocab,
 and result.

 	IRI expanding

 	
 Used as a macro within various algorithms as to reduce the language used to describe
 the process of expanding a string value representing an IRI or keyword
 using an active context either specified directly, or coming from the scope of
 the algorithm step using this term.
 Optional defined and local context arguments are used, if explicitly provided.
 Unless specified,
 the document relative flag defaults to false,
 and the vocab flag defaults to true.

 	Return the result of using the IRI Expansion algorithm,
 passing active context,
 value,
 local context (if supplied),
 defined (if supplied),
 document relative,
 and vocab.

 	JSON-LD input
	
 The JSON-LD data structure that is provided as input to the algorithm.

 1.4.2 Syntax Tokens and Keywords

 In addition to the keywords defined in the JSON-LD 1.1 Syntax specification [JSON-LD11],
 this specification adds an additional keyword to support
 JSON-LD 1.1 Framing [JSON-LD11-FRAMING]:

 	@preserve

 	Used in an expanded document created as the result of the
 Framing algorithm
 to represent values that might otherwise be removed as part of the
 Expansion algorithm.

 1.5 Example Conventions
This section is non-normative.

 Note that in the examples used in this document, output
 is of necessity shown in serialized form as JSON. While the algorithms
 describe operations on the JSON-LD internal representation, when
 they as displayed as examples, the JSON serialization is used. In particular,
 the internal representation use of maps are represented using
 JSON objects.

 Example 2: Sample JSON-LD document

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {
 "name": "Dave Longley"
 }
]
}

 In the internal representation, the example above would be of a
 map containing @context, @id, name, and knows entries,
 with either maps, strings, or arrays of
 maps or strings values. In the JSON serialization, JSON objects are used
 for maps, while arrays and strings are serialized using a
 convention common to many programming languages.

 2. Features
This section is non-normative.

 The JSON-LD 1.1 Syntax specification [JSON-LD11] defines a syntax to
 express Linked Data in JSON. Because there is more than one way to
 express Linked Data using this syntax, it is often useful to be able to
 transform JSON-LD documents so that they may be more easily consumed by
 specific applications.

 To allow these algorithms to be adapted for syntaxes
 other than JSON, the algorithms operate on the JSON-LD internal representation,
 which uses the generic
 concepts of arrays, maps,
 strings, numbers, booleans, and null to describe
 the data represented by a JSON document. Algorithms act on this
 internal representation with API entry points responsible for
 transforming between the concrete and internal representations.

 JSON-LD uses contexts to allow Linked Data
 to be expressed in a way that is specifically tailored to a particular
 person or application. By providing a context,
 JSON data can be expressed in a way that is a natural fit for a particular
 person or application whilst also indicating how the data should be
 understood at a global scale. In order for people or applications to
 share data that was created using a context that is different
 from their own, a JSON-LD processor must be able to transform a document
 from one context to another. Instead of requiring JSON-LD
 processors to write specific code for every imaginable
 context switching scenario, it is much easier to specify a
 single algorithm that can remove any context. Similarly,
 another algorithm can be specified to subsequently apply any
 context. These two algorithms represent the most basic
 transformations of JSON-LD documents. They are referred to as
 expansion and compaction, respectively.

 JSON-LD 1.1 introduces new features that are
 compatible with JSON-LD 1.0 [JSON-LD10],
 but if processed by a JSON-LD 1.0 processor may produce different results.
 Processors default to json-ld-1.1, unless the
 processingMode API option
 is explicitly set to json-ld-1.0.
 Publishers are encouraged to use the @version map entry within a context
 set to 1.1 to ensure that JSON-LD 1.0 processors will not misinterpret JSON-LD 1.1 features.

 There are four major types of transformation that are discussed in this
 document: expansion, compaction, flattening, and RDF serialization/deserialization.

 2.1 Expansion
This section is non-normative.

 The algorithm that removes context is
 called expansion. Before performing any other
 transformations on a JSON-LD document, it is easiest to
 remove any context from it and to make data structures
 more regular.

 To get an idea of how context and data structuring affects the same data,
 here is an example of JSON-LD that uses only terms
 and is fairly compact:

 Example 3: JSON-LD document using only terms

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Markus Lanthaler"}
],
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://www.markus-lanthaler.com/"}
]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	foaf:name	Markus Lanthaler

 	http://me.markus-lanthaler.com/	http://xmlns.com/foaf/0.1/homepage	http://www.markus-lanthaler.com/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://me.markus-lanthaler.com/> foaf:name "Markus Lanthaler";
 foaf:homepage <http://www.markus-lanthaler.com/> .

 The next input example uses one IRI to express a property
 and a map to encapsulate a value, but
 leaves the rest of the information untouched.

 Example 4: Sample JSON-LD document using an IRI instead of a term to express a property

 Compacted (Input)
 Expanded (Result)
 Statements
 Turtle
 Open in playground

 {
 "@context": {
 "website": "http://xmlns.com/foaf/0.1/homepage"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": "Markus Lanthaler",
 "website": { "@id": "http://www.markus-lanthaler.com/" }
}

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 {"@value": "Markus Lanthaler"}
],
 "http://xmlns.com/foaf/0.1/homepage": [
 {"@id": "http://www.markus-lanthaler.com/"}
]
}]

 	Subject	Property	Value

 	http://me.markus-lanthaler.com/	foaf:name	Markus Lanthaler

 	http://me.markus-lanthaler.com/	http://xmlns.com/foaf/0.1/homepage	http://www.markus-lanthaler.com/

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://me.markus-lanthaler.com/> foaf:name "Markus Lanthaler";
 foaf:homepage <http://www.markus-lanthaler.com/> .

 Note that both inputs are valid JSON-LD and both represent the same
 information. The difference is in their context information
 and in the data structures used. A JSON-LD processor can remove
 context and ensure that the data is more regular by employing
 expansion.

 Expansion has two important goals: removing any contextual
 information from the document, and ensuring all values are represented
 in a regular form. These goals are accomplished by expanding all entry keys
 to IRIs and by expressing all
 values in arrays in
 expanded form. Expanded form is the most verbose
 and regular way of expressing of values in JSON-LD; all contextual
 information from the document is instead stored locally with each value.
 Running the Expansion algorithm
 (expand())
 operation) against the above examples results in the following output:

 Example 5: Expanded JSON-LD document using an IRI

 [
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 The example above is the JSON-LD serialization of the output of the
 expansion algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note that in the output above all context definitions have
 been removed, all terms and
 compact IRIs have been expanded to absolute
 IRIs, and all
 JSON-LD values are expressed in
 arrays in expanded form. While the
 output is more verbose and difficult for a human to read, it establishes a
 baseline that makes JSON-LD processing easier because of its very regular
 structure.

 2.2 Compaction
This section is non-normative.

 While expansion removes context from a given
 input, compaction's primary function is to
 perform the opposite operation: to express a given input according to
 a particular context. Compaction applies a
 context that specifically tailors the way information is
 expressed for a particular person or application. This simplifies applications
 that consume JSON or JSON-LD by expressing the data in application-specific
 terms, and it makes the data easier to read by humans.

 Compaction uses a developer-supplied context to
 shorten IRIs to terms or
 compact IRIs and
 JSON-LD values expressed in
 expanded form to simple values such as strings
 or numbers.

 For example, assume the following expanded JSON-LD input document:

 Example 6: Expanded sample document

 [
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 Additionally, assume the following developer-supplied JSON-LD
 context:

 Example 7: JSON-LD context

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 }
}

 Running the Compaction Algorithm
 (compact())
 operation) given the context supplied above against the JSON-LD input
 document provided above would result in the following output:

 Example 8: Compacted sample document

 Open in playground

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "homepage": {
 "@id": "http://xmlns.com/foaf/0.1/homepage",
 "@type": "@id"
 }
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "homepage": "http://www.markus-lanthaler.com/"
}

 The example above is the JSON-LD serialization of the output of the
 compaction algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note that all IRIs have been compacted to
 terms as specified in the context,
 which has been injected into the output. While compacted output is
 useful to humans, it is also used to generate structures that are easy to
 program against. Compaction enables developers to map any expanded document
 into an application-specific compacted document. While the context provided
 above mapped http://xmlns.com/foaf/0.1/name to name, it
 could also have been mapped to any other term provided by the developer.

 2.3 Flattening
This section is non-normative.

 While expansion ensures that a document is in a uniform structure,
 flattening goes a step further to ensure that the shape of the data
 is deterministic. In expanded documents, the properties of a single
 node may be spread across a number of different
 node objects. By flattening a
 document, all properties of a node are collected in a single
 node object and all blank nodes
 are labeled with a blank node identifier. This may drastically
 simplify the code required to process JSON-LD data in certain applications.

 For example, assume the following JSON-LD input document:

 Example 9: JSON-LD document in compact form

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": [
 {"name": "Dave Longley"}
]
}

 Running the Flattening Algorithm
 (flatten())
 operation) with a context set to null to prevent compaction
 returns the following document:

 Example 10: Flattened sample document

 Open in playground

 [{
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/knows": [
 { "@id": "_:b0" }
]
}, {
 "@id": "_:b0",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Dave Longley" }
]
}]

 The example above is the JSON-LD serialization of the output of the
 flattening algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note how in the output above all properties of a node are collected in a
 single node object and how the blank node representing
 "Dave Longley" has been assigned the blank node identifier
 _:b0.

 To make it easier for humans to read or for certain applications to
 process it, a flattened document can be compacted by passing a context. Using
 the same context as the input document, the flattened and compacted document
 looks as follows:

 Example 11: Flattened and compacted sample document

 Open in playground

 {
 "@context": {
 "name": "http://xmlns.com/foaf/0.1/name",
 "knows": "http://xmlns.com/foaf/0.1/knows"
 },
 "@graph": [{
 "@id": "http://me.markus-lanthaler.com/",
 "name": "Markus Lanthaler",
 "knows": { "@id": "_:b0" }
 }, {
 "@id": "_:b0",
 "name": "Dave Longley"
 }]
}

 Please note that the result of flattening and compacting a document
 is always a map,
 (represented as a JSON object when serialized),
 which contains an @graph
 entry that represents the default graph.

 2.4 RDF Serialization/Deserialization
This section is non-normative.

 JSON-LD can be used to serialize RDF data as described in
 [RDF11-CONCEPTS]. This ensures that data can be round-tripped to and from
 any RDF syntax without any loss in fidelity.

 For example, assume the following RDF input serialized in Turtle [TURTLE]:

 Example 12: Sample Turtle document

 @prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://me.markus-lanthaler.com/>
 foaf:name "Markus Lanthaler" ;
 foaf:homepage <http://www.markus-lanthaler.com/> .

 Using the Serialize RDF as JSON-LD Algorithm
 a developer could transform this document into expanded JSON-LD:

 Example 13: Sample Turtle document converted to JSON-LD

 [
 {
 "@id": "http://me.markus-lanthaler.com/",
 "http://xmlns.com/foaf/0.1/name": [
 { "@value": "Markus Lanthaler" }
],
 "http://xmlns.com/foaf/0.1/homepage": [
 { "@id": "http://www.markus-lanthaler.com/" }
]
 }
]

 The example above is the JSON-LD serialization of the output of the
 Serialize RDF as JSON-LD Algorithm,
 where the algorithm's use of maps are replaced with JSON objects.

 Note that the output above could easily be compacted using the technique outlined
 in the previous section. It is also possible to deserialize the JSON-LD document back
 to RDF using the Deserialize JSON-LD to RDF Algorithm.

3. Conformance

 As well as sections marked as non-normative, all authoring guidelines, diagrams, examples, and notes in this specification are non-normative. Everything else in this specification is normative.

 The key words MAY, MUST, MUST NOT, and SHOULD in this document
 are to be interpreted as described in
 BCP 14
 [RFC2119] [RFC8174]
 when, and only when, they appear in all capitals, as shown here.

 There are two classes of products that can claim conformance to this
 specification: JSON-LD Processors,
 and RDF Serializers/Deserializers.

 A conforming JSON-LD Processor is a system which can perform the
 Expansion, Compaction,
 and Flattening operations
 in a manner consistent with
 the algorithms defined in this specification.

 JSON-LD Processors MUST NOT
 attempt to correct malformed IRIs or language tags;
 however, they SHOULD issue validation warnings.
 IRIs are not modified other than conversion between
 relative and absolute IRIs.

 A conforming RDF Serializer/Deserializer is a system that can
 deserialize JSON-LD to RDF and
 serialize RDF as JSON-LD as
 defined in this specification.

 Unless specified using
 processingMode API option,
 the processing mode is set using the @version entry
 in a local context and
 affects the behavior of algorithms including expansion and compaction.
 Once set, it is an error to attempt to change to a different processing mode,
 and processors MUST generate,
 a processing mode conflict
 error and abort further processing.

 The algorithms in this specification are generally written with more concern for clarity
 than efficiency. Thus, JSON-LD Processors may
 implement the algorithms given in this specification in any way desired,
 so long as the end result is indistinguishable from the result that would
 be obtained by the specification's algorithms.

 In algorithm steps that describe operations on keywords, those steps
 also apply to keyword aliases.

 Note
Implementers can partially check their level of conformance to
 this specification by successfully passing the test cases of the
 JSON-LD test suite.
 Note, however, that passing all the tests in the test
 suite does not imply complete conformance to this specification. It only implies
 that the implementation conforms to aspects tested by the test suite.

 This specification makes use of the following namespace prefixes:

 	Prefix
 	IRI

 	rdf
 	http://www.w3.org/1999/02/22-rdf-syntax-ns#

 	xsd
 	http://www.w3.org/2001/XMLSchema#

4. Context Processing Algorithms

 The following sections describe algorithms for processing a JSON-LD context.

 4.1 Context Processing Algorithm

 When processing a JSON-LD data structure, each processing rule is applied
 using information provided by the active context. This
 section describes how to produce an active context.

 The active context consists of:

 	the active term definitions which specify how
 keys and values have to be interpreted (array of term definitions),

 	the current base IRI (IRI),

 	the original base URL (IRI),

 	an inverse context (inverse context),

 	an optional vocabulary mapping (IRI),

 	an optional default language (string),

 	an optional default base direction ("ltr" or "rtl"),

 	and an optional previous context (context),
 used when a non-propagated context is defined.

 Each term definition consists of:

 	an IRI mapping (IRI),

 	a prefix flag (boolean),

 	a protected flag (boolean),

 	a reverse property flag (boolean),

 	an optional base URL (IRI),

 	an optional context (context),

 	an optional container mapping (array of strings),

	an optional direction mapping ("ltr" or "rtl"),

 	an optional index mapping (string),

 	an optional language mapping (string),

 	an optional nest value (string),

 	and an optional type mapping (IRI).

 A term definition can not only be used to map a term
 to an IRI, but also to map a term to a keyword,
 in which case it is referred to as a keyword alias.

 When processing, active context is initialized
 with a null inverse context,
 without any term definitions,
 vocabulary mapping, default base direction, or default language.
 If a local context is encountered during processing, a new
 active context is created by cloning the existing
 active context. Then the information from the
 local context is merged into the new active context.
 Given that local contexts may contain
 references to remote contexts, this includes their retrieval.

 4.1.1 Overview
This section is non-normative.

 First we prepare a new active context result by cloning
 the current active context. Then we normalize the form of the original
 local context to an array.
 Local contexts may be in the form of a
 map, a string, or an array containing
 a combination of the two. Finally we process each context contained
 in the local context array as follows.

 If context is a string, it represents a reference to
 a remote context. We dereference the remote context and replace context
 with the value of the @context entry of the top-level object in the
 retrieved JSON-LD document.
 If there's no such entry, an
 invalid remote context
 has been detected. Otherwise, we process context by recursively using
 this algorithm ensuring that there is no cyclical reference.

 If context is a map,
 it is a context definition.
 We first update
 the base IRI,
 the default base direction,
 the default language,
 context propagation,
 the processing mode,
 and the vocabulary mapping
 by processing six specific keywords:
 @base,
 @direction,
 @language,
 @propagate,
 @version,
 and @vocab.
 These are handled before any other entries in the local context because
 they affect how the other entries are processed.
 If context contains @import, it is retrieved and is reverse-merged
 into the containing context, allowing JSON-LD 1.0 contexts to be upgraded to JSON-LD 1.1.
 Please note that @base is ignored when processing remote contexts.

 If context is not to be propagated,
 a reference to the previous context is retained so that
 it may be rolled back when a new node object is entered.
 By default, all contexts are propagated, other than type-scoped contexts.

 When an active context is initialized, the value
 of the original base URL
 is initialized from the original documentUrl
 of the document containing the initial context, if available,
 otherwise from the base API option.
 This is necessary when resetting the active context
 by setting it to null
 to retain the original default base IRI.

 When initialized, or when any entry of
 an active context is changed,
 or any associated term definition is added, changed, or removed,
 the inverse context field
 in active context is set to null.

 Then, for every other entry in local context, we update
 the term definition in result. Since
 term definitions in a local context
 may themselves contain terms or
 compact IRIs, we may need to recurse.
 When doing so, we must ensure that there is no cyclical dependency,
 which is an error. After we have processed any
 term definition dependencies,
 we update the current term definition,
 which may be a keyword alias.

 Finally, we return result as the new active context.

 4.1.2 Algorithm

 This algorithm specifies how a new active context is updated
 with a local context. The algorithm takes three required
 and four optional
 input variables.
 The required inputs are
 an active context,
 a local context,
 and a base URL used when resolving relative context URLs.
 The optional inputs are
 an array remote contexts,
 defaulting to a new empty array, which is used to detect cyclical context inclusions,

 override protected, defaulting to false,
 which is used to allow changes to protected terms,
 propagate, defaulting to true
 to mark term definitions associated with non-propagated contexts,
 and validate scoped context defaulting to true,
 which is used to limit recursion when validating possibly recursive scoped contexts..

 	Initialize result to the result of cloning
 active context,
 with inverse context set to null..

 	If local context is an object containing the member @propagate,
 its value MUST be boolean true or false,
 set propagate to that value.
 Note
Error handling is performed in step 5.11.

 	If propagate is false, and result
 does not have a previous context, set previous context
 in result to active context.

 	If local context is not an array,
 set local context to an array containing only
 local context.

 	
 For each item context in local context:

 	If context is null:

 	If override protected is false and active context
 contains any protected term definitions,
 an invalid context nullification
 has been detected and processing is aborted.

 	Initialize result as a
 newly-initialized active context,

 setting both base IRI and original base URL to the value of
 original base URL in active context,
 and, if propagate is false,
 previous context in result
 to the previous value of result.

 	Continue with the next context.

 	If context is a string,

 	Initialize context to the result of resolving context against
 base URL. If base URL is not a valid IRI,
 then context MUST be a valid IRI, otherwise
 a loading document failed error
 has been detected and processing is aborted.
 Note

 base URL is often not the same as base
 or the base IRI of the active context.

 	If validate scoped context is false,
 and remote contexts already includes context
 do not process context further and continue to any next
 context in local context.

 	If the number of entries in the remote contexts array
 exceeds a processor defined limit, a
 context overflow
 error has been detected and processing is aborted;
 otherwise, add context to remote contexts.

 	If context was previously dereferenced,
 then the processor MUST NOT do a further dereference, and
 context is set to the
 previously established internal representation:
 set context document to the previously dereferenced document,
 and set loaded context to the value of the @context
 entry from the document in context document.
 Note
Only the @context entry need be retained.

 	Otherwise, set context document
 to the RemoteDocument obtained
 by dereferencing context using
 the LoadDocumentCallback, passing context
 for url,
 and http://www.w3.org/ns/json-ld#context for profile
 and for requestProfile.

 	If context cannot be dereferenced,

 or the document from context document
 cannot be transformed into the internal representation
 ,
 a loading remote context failed
 error has been detected and processing is aborted.

 	If the document has no
 top-level map with an @context entry, an
 invalid remote context
 has been detected and processing is aborted.

 	Set loaded context to the value of that entry.

 	Set result to the result of recursively calling this algorithm,
 passing result for active context,
 loaded context for local context,

 the documentUrl of context document for base URL,

 a copy of remote contexts,
 and validate scoped context.
 Note
If context was previously dereferenced,
 processors MUST make provisions for retaining the base URL
 of that context for this step to enable the resolution of any
 relative context URLs that may be encountered during processing.

 	Continue with the next context.

 	If context is not a map, an
 invalid local context
 error has been detected and processing is aborted.

 	Otherwise, context is a context definition.

 	If context has an @version entry:

 	If the associated value is not 1.1,
 an invalid @version value
 has been detected, and processing is aborted.
 Note
The use of 1.1 for the value of @version is intended to
 cause a JSON-LD 1.0 processor to stop processing.
 Although it is clearly meant to be related to JSON-LD 1.1, it does not
 otherwise adhere to the requirements for Semantic Versioning.
 Implementations may require
 special consideration
 when comparing the values of numbers with a non-zero fractional part.

 	If processing mode
 is set to json-ld-1.0,
 a processing mode conflict
 error has been detected and processing is aborted.

 	If context has an @import entry:

 	If processing mode is json-ld-1.0,
 an invalid context entry
 error has been detected and processing is aborted.

 	Otherwise, if the value of @import is not a string,
 an invalid @import value
 error has been detected and processing is aborted.

 	Initialize import to the result of resolving the value of @import against
 base URL.

 	Dereference import using
 the LoadDocumentCallback, passing import
 for url,
 and http://www.w3.org/ns/json-ld#context for profile
 and for requestProfile.

 	If import cannot be dereferenced,
 or cannot be transformed into the internal representation,
 a loading remote context failed
 error has been detected and processing is aborted.

 	If the dereferenced document has no
 top-level map with an @context entry,
 or if the value of @context is not a context definition
 (i.e., it is not an map),
 an invalid remote context
 has been detected and processing is aborted; otherwise,
 set import context to the value of that entry.

 	If import context has a @import entry,
 an invalid context entry
 error has been detected and processing is aborted.

 	Set context to the result of merging context
 into import context, replacing common entries
 with those from context.

 	If context has an @base entry and remote contexts is empty, i.e., the currently
 being processed context is not a remote context:

 	Initialize value to the value associated with the
 @base entry.

 	If value is null, remove the
 base IRI of result.

 	Otherwise, if value is an IRI,
 the base IRI of result is set to value.

 	Otherwise, if value is a relative IRI reference and
 the base IRI of result is not null,
 set the base IRI of result to the result of
 resolving value against the current base IRI
 of result.

 	Otherwise, an
 invalid base IRI
 error has been detected and processing is aborted.

 	If context has an @vocab entry:

 	Initialize value to the value associated with the
 @vocab entry.

 	If value is null, remove
 any vocabulary mapping from result.

 	Otherwise, if value is
 an IRI
 or blank node identifier, the vocabulary mapping
 of result is set to
 the result of
 IRI expanding value
 using true for document relative
 .
 If it is not an IRI, or a blank node identifier, an
 invalid vocab mapping
 error has been detected and processing is aborted.
 Note
The use of blank node identifiers to value for @vocab is obsolete,
 and may be removed in a future version of JSON-LD.

 	If context has an @language entry:

 	Initialize value to the value associated with the
 @language entry.

 	If value is null, remove
 any default language from result.

 	Otherwise, if value is a string, the
 default language of result is set to
 value.
 If it is not a string, an
 invalid default language
 error has been detected and processing is aborted.
 If value is not well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 Note
Processors MAY normalize language tags to lower case.

 	If context has an @direction entry:

 	If processing mode is json-ld-1.0,
 an invalid context entry
 error has been detected and processing is aborted.

 	Initialize value to the value associated with the
 @direction entry.

 	If value is null, remove
 any base direction from result.

 	Otherwise, if value is a string, the
 base direction of result is set to
 value. If it is not null, "ltr", or "rtl", an
 invalid base direction
 error has been detected and processing is aborted.

 	If context has an @propagate entry:

 	If processing mode is json-ld-1.0,
 an invalid context entry
 error has been detected and processing is aborted.

 	Otherwise, if the value of @propagate is not boolean true or false,
 an invalid @propagate value
 error has been detected and processing is aborted.
 Note
The previous context is actually set earlier in this algorithm;
 the previous two steps exist for error checking only.

 	Create a map defined to keep
 track of whether or not a term has already been defined
 or is currently being defined during recursion.

 	For each key-value pair in context where
 key is not
 @base,
 @direction,
 @import,
 @language,
 @propagate,
 @protected,
 @version, or
 @vocab,
 invoke the
 Create Term Definition algorithm,
 passing result for active context,
 context for local context, key,
 defined,

 base URL,
 the value of the @protected
 entry from context, if any, for protected,
 override protected,
 and a copy of remote contexts.

 	Return result.

 4.2 Create Term Definition

 This algorithm is called from the
 Context Processing algorithm
 to create a term definition in the active context
 for a term being processed in a local context.

 4.2.1 Overview
This section is non-normative.

 Term definitions are created by
 parsing the information in the given local context for the
 given term. If the given term is a
 compact IRI, it may omit an IRI mapping by
 depending on its prefix having its own
 term definition. If the prefix is
 an entry in the local context, then its term definition
 must first be created, through recursion, before continuing. Because a
 term definition can depend on other
 term definitions, a mechanism must
 be used to detect cyclical dependencies. The solution employed here
 uses a map, defined, that keeps track of whether or not a
 term has been defined or is currently in the process of
 being defined. This map is checked before any recursion is attempted.

 After all dependencies for a term have been defined, the rest of
 the information in the local context for the given
 term is taken into account, creating the appropriate
 IRI mapping, container mapping, and
 type mapping,
 language mapping,
 or direction mapping
 for the term.

 4.2.2 Algorithm

 The algorithm has four required and five optional inputs.
 The required inputs are
 an active context,
 a local context,
 a term,
 and a map defined.
 The optional inputs are
 base URL defaulting to null,
 protected which defaults to false,
 and override protected, defaulting to false,
 which is used to allow changes to protected terms,
 an array remote contexts,
 defaulting to a new empty array, which is used to detect cyclical context inclusions,
 and validate scoped context defaulting to true,
 which is used to limit recursion when validating possibly recursive scoped contexts..

 	If defined contains the entry term and the associated
 value is true (indicating that the
 term definition has already been created), return. Otherwise,
 if the value is false, a
 cyclic IRI mapping
 error has been detected and processing is aborted.

 	If term is the empty string (""),
 an invalid term definition
 error has been detected and processing is aborted.
 Otherwise, set the value associated with defined's term entry to
 false. This indicates that the term definition
 is now being created but is not yet complete.

 	Initialize value to a copy of the value associated with the entry
 term in local context.

 	If term is @type,
 and processing mode is json-ld-1.0,
 a keyword redefinition error has
 been detected and processing is aborted.
 At this point,
 value MUST be a map with only either or both of the following entries:

 	An entry for @container with value @set.

 	An entry for @protected.

 Any other value means that a
 keyword redefinition error has
 been detected and processing is aborted.

 	Otherwise, since keywords cannot be overridden,
 term MUST NOT be a keyword and a
 keyword redefinition
 error has been detected and processing is aborted.
 If term has the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 return; processors SHOULD generate a warning.

 	Initialize previous definition to any existing
 term definition for term in active context,
 removing that term definition from active context.

 	If value is null,
 convert it to a map consisting of a single entry whose
 key is @id and whose value is null.

 	Otherwise, if value is a string, convert it
 to a map consisting of a single entry whose
 key is @id and whose value is value.
 Set simple term to true.

 	Otherwise, value MUST be a map, if not, an
 invalid term definition
 error has been detected and processing is aborted.
 Set simple term to false.

 	Create a new term definition, definition,
 initializing prefix flag to false,
 protected to protected,
 and reverse property to false.

 	If value has an @protected entry,
 set the protected flag in definition to the value of this entry.
 If the value of @protected is not a boolean,
 an invalid @protected value error has been detected and processing is aborted.
 If processing mode is json-ld-1.0,
 an invalid term definition
 has been detected and processing is aborted.

 	If value contains the entry @type:

 	Initialize type to the value associated with the
 @type entry, which MUST be a string. Otherwise, an
 invalid type mapping
 error has been detected and processing is aborted.

 	Set type to the result of
 IRI expanding type,
 using local context, and defined.

 	If the expanded type is
 @json or @none, and processing mode is json-ld-1.0,
 an invalid type mapping
 error has been detected and processing is aborted.

 	Otherwise, if the expanded type is
 neither @id, nor @json,
 nor @none,
 nor @vocab,
 nor an IRI,
 an invalid type mapping
 error has been detected and processing is aborted.

 	Set the type mapping for definition to type.

 	If value contains the entry @reverse:

 	If value contains @id or @nest, entries, an
 invalid reverse property
 error has been detected and processing is aborted.

 	If the value associated with the @reverse entry
 is not a string, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	If the value associated with the @reverse entry is a string
 having the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 return; processors SHOULD generate a warning.

 	Otherwise, set the IRI mapping of definition to the
 result of
 IRI expanding
 the value associated with the @reverse entry,
 using local context, and defined.
 If the result does not have the form of an IRI or a blank node identifier,
 an invalid IRI mapping
 error has been detected and processing is aborted.

 	If value contains an @container entry,
 set the container mapping of definition
 to an array containing its value;
 if its value is neither @set, nor
 @index, nor null, an
 invalid reverse property
 error has been detected (reverse properties only support set- and
 index-containers) and processing is aborted.

 	Set the reverse property flag of definition
 to true.

 	Set the term definition of term in
 active context to definition and the
 value associated with defined's entry term to
 true and return.

 	If value contains the entry @id and its value
 does not equal term:

 	If the @id entry of value
 is null, the term is not used for IRI expansion, but is
 retained to be able to detect future redefinitions of this term.

 	Otherwise:

 	If the value associated with the @id entry is not a string, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	If the value associated with the @id entry
 is not a keyword, but
 has the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 return; processors SHOULD generate a warning.

 	Otherwise, set the IRI mapping of definition to the
 result of
 IRI expanding
 the value associated with the @id entry,
 using local context, and defined.
 If the resulting IRI mapping is neither a keyword, nor an
 IRI, nor a blank node identifier, an
 invalid IRI mapping
 error has been detected and processing is aborted; if it equals @context, an
 invalid keyword alias
 error has been detected and processing is aborted.

 	If the term contains a colon (:)
 anywhere but as the first or last character of term,
 or if it contains a slash (/) anywhere:

 	Set the value associated with defined's term entry to
 true.

 	If the result of IRI expanding term
 using local context, and defined,
 is not the same as the IRI mapping of definition,
 an invalid IRI mapping
 error has been detected and processing is aborted.

 	If term contains neither a colon (:) nor a slash (/),
 simple term is true,
 and if the IRI mapping of definition
 is either an IRI ending with a gen-delim character,
 or a blank node identifier,
 set the prefix flag in definition to true.

 	
 Otherwise if the term contains a colon (:)
 anywhere after the first character:

 	If term is a compact IRI with a
 prefix that is an entry in local context
 a dependency has been found. Use this algorithm recursively passing
 active context, local context, the
 prefix as term, and defined.

 	If term's prefix has a
 term definition in active context, set
 the IRI mapping of definition to the result of
 concatenating the value associated with the prefix's
 IRI mapping and the term's suffix.

 	Otherwise, term is an IRI or
 blank node identifier. Set the IRI mapping
 of definition to term.

 	
 Otherwise if the term contains a slash (/):

 	Term is a relative IRI reference.

 	Set the IRI mapping of definition to the
 result of IRI expanding term.
 If the resulting IRI mapping is not an IRI, an
 invalid IRI mapping
 error has been detected and processing is aborted.

 	Otherwise, if term is @type, set the IRI mapping
 of definition to @type.

 	Otherwise, if active context has a
 vocabulary mapping, the IRI mapping
 of definition is set to the result of concatenating the value
 associated with the vocabulary mapping and term.
 If it does not have a vocabulary mapping, an
 invalid IRI mapping
 error been detected and processing is aborted.

 	If value contains the entry @container:

 	Initialize container to the value associated with the
 @container entry, which MUST be either
 @graph,
 @id,
 @index,
 @language,
 @list,
 @set,
 @type,

 or an array containing exactly any one of those keywords,
 an array containing @graph and
 either @id or @index optionally
 including @set,
 or an array containing a combination of @set and any of
 @index, @graph,
 @id, @type,
 @language in any order
 .
 Otherwise, an
 invalid container mapping
 has been detected and processing is aborted.

 	If the container value
 is @graph, @id, or @type, or is otherwise not a string,
 generate an invalid container mapping
 error and abort processing if processing mode is json-ld-1.0.

 	Set the container mapping of definition to
 container
 coercing to an array, if necessary.

 	If the container mapping of definition includes @type:

 	If type mapping in definition is undefined, set it to @id.

 	If type mapping in definition is neither @id nor @vocab,
 an invalid type mapping
 error has been detected and processing is aborted.

 	If value contains the entry @index:

 	If processing mode is json-ld-1.0 or
 container mapping does not include @index,
 an invalid term definition
 has been detected and processing is aborted.

 	Initialize index to the value associated with the
 @index entry.
 If the result of IRI expanding that value is not an IRI,
 an
 invalid term definition
 has been detected and processing is aborted.

 	Set the index mapping of definition to index

 	If value contains the entry @context:

 	If processing mode is json-ld-1.0, an
 invalid term definition
 has been detected and processing is aborted.

 	Initialize context to the value associated with the
 @context entry, which is treated as a local context.

 	Invoke the Context Processing algorithm
 using the active context, context as local context,
 base URL,
 true for override protected,
 a copy of remote contexts,
 and false for validate scoped context.
 If any error is detected, an
 invalid scoped context error
 has been detected and processing is aborted.
 Note
The result of the Context Processing algorithm
 is discarded; it is called to detect errors at definition time.
 If used, the context will be re-processed and applied to the active context
 as part of expansion or compaction.

 	Set the local context of definition to context,
 and base URL to base URL.

 	If value contains the entry @language and
 does not contain the entry @type:

 	Initialize language to the value associated with the
 @language entry, which MUST be either null
 or a string.
 If language is not well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 Otherwise, an invalid language mapping
 error has been detected and processing is aborted.

 	Set the language mapping of definition to language.
 Note
Processors MAY normalize language tags to lower case.

 	If value contains the entry @direction and
 does not contain the entry @type:

 	Initialize direction to the value associated with the
 @direction entry, which MUST be either null,
 "ltr", or "rtl". Otherwise, an
 invalid base direction
 error has been detected and processing is aborted.

 	Set the direction mapping
 of definition to direction.

 	If value contains the entry @nest:

 	If processing mode is json-ld-1.0, an
 invalid term definition
 has been detected and processing is aborted.

 	Initialize nest value in definition to the value associated with the
 @nest entry, which MUST be a string and
 MUST NOT be a keyword other than @nest. Otherwise, an
 invalid @nest value
 error has been detected and processing is aborted.

 	If value contains the entry @prefix:

 	If processing mode is json-ld-1.0, or if
 term contains a colon (:) or slash (/), an
 invalid term definition
 has been detected and processing is aborted.

 	Set the prefix flag to the value associated with the
 @prefix entry, which MUST be a boolean. Otherwise, an
 invalid @prefix value
 error has been detected and processing is aborted.

 	If the prefix flag of definition is set to true,
 and its IRI mapping is a keyword,
 an invalid term definition
 has been detected and processing is aborted.

 	If value contains any entry other than @id,
 @reverse, @container,
 @context,
 @direction,
 @index,
 @language,
 @nest,
 @prefix,
 @protected,
 or @type,
 an invalid term definition error has
 been detected and processing is aborted.

 	If override protected is false
 and previous definition exists and is protected;

 	If definition is not the same as previous definition
 (other than the value of protected),
 a protected term redefinition error has been detected,
 and processing is aborted.

 	Set definition to previous definition to retain the value
 of protected.

 	Set the term definition of term in
 active context to definition and set the value
 associated with defined's entry term to
 true.

 4.3 Inverse Context Creation

 When there is more than one term that could be chosen
 to compact an IRI, it has to be ensured that the term
 selection is both deterministic and represents the most context-appropriate
 choice whilst taking into consideration algorithmic complexity.

 In order to make term selections, the concept of an
 inverse context is introduced. An inverse context
 is essentially a reverse lookup table that maps
 container mapping,
 type mappings, and
 language mappings to a simple
 term for a given active context. A
 inverse context only needs to be generated for an
 active context if it is being used for compaction.

 To make use of an inverse context, a list of preferred
 container mapping and the
 type mapping or language mapping are gathered
 for a particular value associated with an IRI. These parameters
 are then fed to the Term Selection algorithm,
 which will find the term that most appropriately
 matches the value's mappings.

 4.3.1 Overview
This section is non-normative.

 To create an inverse context for a given
 active context, each term in the
 active context is visited, ordered by length, shortest
 first (ties are broken by choosing the lexicographically least
 term). For each term, an entry is added to
 the inverse context for each possible combination of
 container mapping and type mapping
 or language mapping that would legally match the
 term. Illegal matches include differences between a
 value's type mapping or language mapping and
 that of the term. If a term has no
 container mapping, type mapping, or
 language mapping (or some combination of these), then it
 will have an entry in the inverse context using the special
 key @none. This allows the
 Term Selection algorithm to fall back
 to choosing more generic terms when a more
 specifically-matching term is not available for a particular
 IRI and value combination.

 Although normalizing language tags is optional,
 the inverse context creates entries based on normalized
 language tags, so that the proper term can be selected
 regardless of representation.

 4.3.2 Algorithm

 The algorithm takes one required input: the active context that
 the inverse context is being created for.

 	Initialize result to an empty map.

 	Initialize default language to @none.
 If the active context has a default language,
 set default language to the default language from the active context
 normalized to lower case.

 	For each key term and value term definition in
 the active context, ordered by shortest term
 first (breaking ties by choosing the lexicographically least
 term):

 	If the term definition is null,
 term cannot be selected during compaction,
 so continue to the next term.

 	Initialize container to @none.

 If the container mapping is not empty, set container
 to the concatenation of all values of the container mapping
 in lexicographical order
 .

 	Initialize var to the value of the IRI mapping
 for the term definition.

 	If var is not an entry of result, add
 an entry where the key is var and the value
 is an empty map to result.

 	Reference the value associated with the var entry in
 result using the variable container map.

 	If container map has no container entry,
 create one and set its value to a new
 map with three entries.
 The first entry is @language and its value is a new empty
 map, the second entry is @type
 and its value is a new empty map,
 and the third entry is @any
 and its value is a new map with the entry
 @none set to the term being processed.

 	Reference the value associated with the container entry
 in container map using the variable type/language map.

 	Reference the value associated with the @type
 entry in type/language map using the variable
 type map.

 	Reference the value associated with the @language
 entry in type/language map using the variable
 language map.

 	If the term definition indicates that the term
 represents a reverse property:

 	If type map does not have an @reverse
 entry, create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 type mapping which is @none:

 	If language map does not have an @any
 entry, create one and set its value to the term
 being processed.

 	If type map does not have an @any
 entry, create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 type mapping:

 	If type map does not have an entry corresponding
 to the type mapping in term definition,
 create one and set its value to the term
 being processed.

 	Otherwise, if term definition has both
 a language mapping and a direction mapping:

 	Create a new variable lang dir.

 	If neither the language mapping nor the direction mapping
 are null, set lang dir to the concatenation
 of language mapping and direction mapping
 separated by an underscore ("_")
 normalized to lower case.

 	Otherwise, if language mapping is not null,
 set lang dir to the language mapping,
 normalized to lower case.

	Otherwise, if direction mapping is not null,
 set lang dir to direction mapping
 preceded by an underscore ("_").

 	Otherwise, set lang dir to @null.

 	If language map does not have a lang dir
 entry, create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 language mapping (might be null):

 	If the language mapping equals null,
 set language to @null; otherwise
 to the language mapping,
 normalized to lower case.

 	If language map does not have a language entry,
 create one and set its value to the term
 being processed.

 	Otherwise, if term definition has a
 direction mapping (might be null):

 	If the direction mapping equals null,
 set direction to @none; otherwise
 to direction mapping preceded by an underscore ("_").

 	If language map does not have a direction entry,
 create one and set its value to the term
 being processed.

 	Otherwise, if active context has a
 default base direction:

 	Initialize a variable lang dir
 with the concatenation of default language and default base direction,
 separate by an underscore ("_"),
 normalized to lower case.

 	If language map does not have a lang dir entry,
 create one and set its value to the term
 being processed.

 	If language map does not have an @none entry,
 create one and set its value to the term
 being processed.

 	If type map does not have an @none entry,
 create one and set its value to the term
 being processed.

 	Otherwise:

 	If language map does not have a default language entry
 (after being normalized to lower case),
 create one and set its value to the term
 being processed.

 	If language map does not have an @none
 entry, create one and set its value to the term
 being processed.

 	If type map does not have an @none
 entry, create one and set its value to the term
 being processed.

 	Return result.

 4.4 Term Selection

 This algorithm, invoked via the IRI Compaction algorithm,
 makes use of an active context's
 inverse context to find the term that is best
 used to compact an IRI. Other
 information about a value associated with the IRI is given,
 including which container mapping
 and which type mapping or language mapping would
 be best used to express the value.

 4.4.1 Overview
This section is non-normative.

 The inverse context's entry for
 the IRI will be first searched according to the preferred
 container mapping, in the order
 that they are given. Amongst terms with a matching
 container mapping, preference will be given to those
 with a matching type mapping or language mapping,
 over those without a type mapping or
 language mapping. If there is no term
 with a matching container mapping then the term
 without a container mapping that matches the given
 type mapping or language mapping is selected. If
 there is still no selected term, then a term
 with no type mapping or language mapping will
 be selected if available. No term will be selected that
 has a conflicting type mapping or language mapping.
 Ties between terms that have the same
 mappings are resolved by first choosing the shortest terms, and then by
 choosing the lexicographically least term. Note that these ties are
 resolved automatically because they were previously resolved when the
 Inverse Context Creation algorithm
 was used to create the inverse context.

 4.4.2 Algorithm

 This algorithm has five required inputs. They are:
 an active context,
 a keyword or IRI var,
 an array containers that represents an
 ordered list of preferred container mapping,
 a string type/language that indicates whether
 to look for a term with a matching type mapping
 or language mapping,
 and an array representing an ordered list of preferred values
 for the type mapping or language mapping to look for.

 	If the active context has a null
 inverse context,
 set inverse context in active context
 to the result of calling the
 Inverse Context Creation algorithm
 using active context.

 	Initialize inverse context to the value of
 inverse context in active context.

 	Initialize container map to the value associated with
 var in the inverse context.

 	For each item container in containers:

 	If container is not an entry of container map, then
 there is no term with a matching
 container mapping for it, so continue to the next
 container.

 	Initialize type/language map to the value associated
 with the container entry in container map.

 	Initialize value map to the value associated
 with type/language entry in type/language map.

 	For each item in preferred values:

 	If item is not an entry of value map,
 then there is no term with a matching
 type mapping or language mapping,
 so continue to the next item.

 	Otherwise, a matching term has been found, return the value
 associated with the item entry in
 value map.

 	No matching term has been found. Return null.

 4.4.3 Examples
This section is non-normative.

 The following examples are intended to illustrate how the term selection algorithm
 behaves for different term definitions and values. It is not comprehensive, but
 intended to illustrate different parts of the algorithm.

 Language Map Term

 If the term definition has "@container": "@language", it will only match a
 value object having no @type.

 Example 14: Term definition with language map

 {
 "@context": {"t": {"@id": "http://example.org/t", "@container": "@language"}}
}

 The inverse context will contain the following:

 {
 "@language": {
 "@language": {"@none": "t"},
 "@type": {"@none": "t"},
 "@any": {"@none": "t"}
 }
}

 Example 15: Language map term with language value

 Given the entry {"http://example.org/t": {"@value": "foo", "@type": "http:/example.org/type"}},
 The algorithm will be invoked as follows:

 	containers

 	["@language", "@language@set", "@set", "@none", "@index", "@index@set"]

 	type/language

 	@language

 	preferred values

 	["en", "@none"]

 The value map will be set to {"@none": "t"},
 as preferred values contains "@none",
 the algorithm returns "t" as the term to use for compaction.

 Datatyped Term

 If the term definition has a datatype, it will only match a
 value object having a matching datatype.

 Example 16: Term definition with datatype

 {
 "@context": {"t": {"@id": "http://example.org/t", "@type": "http:/example.org/type"}}
}

 The inverse context will contain the following:

 {
 "@none": {
 "@language": {},
 "@type": {"http:/example.org/type": "t"},
 "@any": {"@none": "t"}
 }
}

 Example 17: Datatyped term with datatyped value

 Given the entry {"http://example.org/t": {"@value": "foo", "@type": "http:/example.org/type"}},
 The algorithm will be invoked as follows:

 	containers

 	["@set", "@none", "@index", "@index@set"]

 	type/language

 	@type

 	preferred values

 	["http:/example.org/type", "@none"]

 The value map will be set to {"http:/example.org/type": "t"},
 as preferred values contains "http:/example.org/type",
 the algorithm returns "t" as the term to use for compaction.

 Example 18: Datatyped term with simple value

 Given the entry {"http://example.org/t": {"@value": "foo"}},
 The algorithm will be invoked as follows:

 	containers

 	["@set", "@none", "@index", "@index@set", "@language", "@language@set"]

 	type/language

 	@language

 	preferred values

 	["@null", "@none"]

 The value map will be set to {"@none": "t"},
 as no key in preferred values matches a key in value map,
 the algorithm returns null and no term is found.

 Example 19: Datatyped term with object value

 Given the entry {"http://example.org/t": {"@id": "http://example.org/id"}},
 The algorithm will be invoked as follows:

 	containers

 	["@id", "@id@set", "@type", "@set@type", "@set", "@none", "@index", "@index@set"]

 	type/language

 	@type

 	preferred values

 	["@id", "@vocab", "@none"]

 The value map will be set to {"http:/example.org/type": "t"},
 as no key in preferred values matches a key in value map,
 the algorithm returns null and no term is found.

5. Expansion Algorithms

 The following sections describe algorithms for expanding JSON-LD
 documents, IRIs and values.

 5.1 Expansion Algorithm

 This algorithm expands a JSON-LD document, such that all context
 definitions are removed, all terms and
 compact IRIs are expanded to
 IRIs,
 blank node identifiers, or
 keywords and all
 JSON-LD values are expressed in
 arrays in expanded form.

 5.1.1 Overview
This section is non-normative.

 Starting with its root element, we can process the
 JSON-LD document recursively, until we have a fully
 expanded result. When
 expanding an element, we can treat
 each one differently according to its type, in order to break down the
 problem:

 	If the element is null, there is nothing
 to expand.

 	Otherwise, if element is a scalar, we expand it
 according to the Value Expansion algorithm.

 	Otherwise, if the element is an array, then we expand
 each of its items recursively and return them in a new
 array.

 	Otherwise, element is a map. We expand
 each of its entries, adding them to our result, and then we expand
 each value for each entry recursively. Some of the entry keys will be
 terms or
 compact IRIs and others will be
 keywords or simply ignored because
 they do not have definitions in the context. Any
 IRIs will be expanded using the
 IRI Expansion algorithm.

 Finally, after ensuring result is in an array,
 we return result.

 Note
Although the data model,
 based on [RDF11-CONCEPTS], does not support multiple unordered property values,
 this algorithm does not remove duplicates that
 may be found during expansion within an unordered array.
 Other algorithms, such as § 6.1 Compaction Algorithm,
 and § 7.1 Flattening Algorithm, do eliminate
 duplicate values from unordered arrays.
 A future version of this specification may be updated to remove duplicate
 array values when the form a set.

 5.1.2 Algorithm

 The algorithm takes four required and three optional input variables.
 The required inputs are an active context,
 an active property, an element to be expanded,
 and a base URL associated with the documentUrl of the original
 document to expand.
 The optional inputs are the
 frameExpansion
 flag allowing special forms of input used for frame expansion,
 the ordered flag, used to order
 map entry keys lexicographically, where noted,
 and the from map flag, used to control reverting
 previous term definitions in the active context associated with non-propagated contexts.
 If not passed, the optional flags are set to false.

 The algorithm also performs processing steps specific to expanding
 a JSON-LD Frame. For a frame, the @id and
 @type entries can accept an array of IRIs or
 an empty map. The entries of a value object can also
 accept an array of strings, or an empty map.
 Framing also uses additional keyword entries:
 (@explicit, @default,
 @embed, @explicit, @omitDefault, or
 @requireAll) which are preserved through expansion.
 Special processing for a JSON-LD Frame is invoked when the
 frameExpansion flag is set to true.

 Note
As mentioned in Terms [JSON-LD11],
 to avoid forward-compatibility issues, terms should not start with an
 @ character as future versions of JSON-LD may introduce
 additional keywords.
 This algorithm will treat such terms like any other term, i.e., they are ignored unless mapped to an IRI.
 Implementations of this algorithm may consider providing a
 runtime flag to show a warning if such terms are encountered.

 Note
The use of empty terms ("") is not
 allowed as not all programming languages are able to handle empty JSON keys.
 Implementations of this algorithm may consider providing a
 runtime flag to show a warning if such terms are encountered.

 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.
 Implementations of this algorithm may consider providing a
 runtime flag to show a warning if such terms are encountered.

 	If element is null, return null.

 	If active property is @default,
 initialize the frameExpansion flag to false.

 	If active property has a term definition in active context
 with a local context, initialize property-scoped context to that local context.

 	If element is a scalar,

 	If active property is null or @graph,
 drop the free-floating scalar by returning null.

 	If property-scoped context is defined,
 set active context to the result of the
 Context Processing algorithm,
 passing active context, property-scoped context as local context,
 and base URL from the term definition for active property
 in active context.

 	Return the result of the
 Value Expansion algorithm, passing the
 active context, active property, and
 element as value.

 	If element is an array,

 	Initialize an empty array, result.

 	For each item in element:

 	Initialize expanded item to the result of using this
 algorithm recursively, passing active context,
 active property, item as element,
 base URL,
 the frameExpansion
 ordered,
 and from map flags.

 	If the container mapping
 of active property includes @list,
 and expanded item is an
 array, set expanded item to a new
 map containing the entry
 @list where the value is the original
 expanded item.

 	If expanded item is an array, append each
 of its items to result. Otherwise, if
 expanded item is not null, append it to result.

 	Return result.

 	Otherwise element is a map.

 	If active context has a previous context,
 the active context is not propagated.
 If from map is undefined or false,
 and element does not contain an entry expanding to @value,
 and element does not consist of a single entry expanding to @id
 (where entries are IRI expanded,
 set active context to previous context from active context,
 as the scope of a term-scoped context does not apply when processing new node objects.

 	If property-scoped context is defined,
 set active context to the result of the
 Context Processing algorithm,
 passing active context, property-scoped context as local context,
 base URL from the term definition for active property,
 in active context
 and true for override protected.

 	If element contains the entry @context, set
 active context to the result of the
 Context Processing algorithm,
 passing active context, the value of the
 @context entry as local context
 and base URL.

 	Initialize type-scoped context to active context.
 This is used for expanding values that may be relevant to any previous
 type-scoped context.

 	For each key and value in element
 ordered lexicographically by key
 where key IRI expands to @type:

 	Convert value into an array, if necessary.

 	For each term which is a value of value ordered lexicographically,
 if term is a string,
 and term's term definition in type-scoped context
 has a local context, set active context to the result
 Context Processing algorithm,
 passing active context,
 the value of the
 term's local context as local context,
 base URL from the term definition for value
 in active context,
 and false for propagate.

 	Initialize two empty maps, result
 and nests.
 Initialize input type to expansion of the last value of the first entry in element
 expanding to @type (if any), ordering entries lexicographically by key.
 Both the key and value of the matched entry are
 IRI expanded.

 	
 For each key and value in element,
 ordered lexicographically by key if ordered is true:

 	If key is @context, continue to
 the next key.

 	Initialize expanded property to the result of
 IRI expanding key.

 	If expanded property is null or it neither
 contains a colon (:) nor it is a keyword,
 drop key by continuing to the next key.

 	If expanded property is a keyword:

 	If active property equals @reverse, an
 invalid reverse property map
 error has been detected and processing is aborted.

 	If result already has an expanded property entry,
 other than @included or @type
 (unless processing mode is json-ld-1.0),
 a colliding keywords
 error has been detected and processing is aborted.

 	If expanded property is @id:

 	If value is not a string, an
 invalid @id value
 error has been detected and processing is aborted.

 When the frameExpansion flag is set, value
 MAY be an empty map, or an array of one
 or more strings.

 	Otherwise,
 set expanded value to the result of
 IRI expanding value
 using true for document relative
 and false for vocab.

 When the frameExpansion flag is set, expanded value will be
 an array of one or more of the values, with string
 values expanded using the IRI Expansion algorithm as above.

 	If expanded property is @type:

 	If value
 is neither a string nor an array of
 strings, an
 invalid type value
 error has been detected and processing is aborted.

 When the frameExpansion flag is set, value
 MAY be an empty map, or a default object
 where the value of @default is restricted to be
 an IRI.
 All other values mean that invalid type value
 error has been detected and processing is aborted.

 	If value
 is an empty map, set expanded value to value.

 	Otherwise, if value
 is a default object, set expanded value to
 a new default object with the value of @default set
 to the result of
 IRI expanding value
 using type-scoped context for active context,
 and true for document relative.

 	Otherwise,
 set expanded value to the result of
 IRI expanding
 each of its values
 using type-scoped context for active context,
 and true for document relative.

 	If result already has an entry for @type,
 prepend the value of @type in result to expanded value,
 transforming it into an array, if necessary.
 Note

 No transformation from a string value to an array
 expanded value is implied, and the form or value
 should be preserved in expanded value.

 	If expanded property is @graph, set
 expanded value to the result of using this algorithm
 recursively passing active context, @graph
 for active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags,

 ensuring that expanded value is an array of one or more maps.

 	If expanded property is @included:

 	If processing mode is json-ld-1.0,
 continue with the next key from element.

 	Set expanded value to the result of using
 this algorithm recursively passing active context,
 null for active property,
 value for element,
 base URL,
 and the frameExpansion
 and ordered flags,
 ensuring that the result is an array.

 	If any element of expanded value is not a node object,
 an invalid @included value
 error has been detected and processing is aborted.

 	If result already has an entry for @included,
 prepend the value of @included in result to expanded value.

 	If expanded property is @value:

 	If
 input type is @json,
 set expanded value to value.
 If processing mode is json-ld-1.0,
 an invalid value object value
 error has been detected and processing is aborted.

 	Otherwise, if value is not a scalar or null,
 an invalid value object value
 error has been detected and processing is aborted.
 When the frameExpansion flag is set, value
 MAY be an empty map or an array of
 scalar values.

 	Otherwise, set expanded value to value.
 When the frameExpansion flag is set,
 expanded value will be an
 array of one or more string values
 or an array containing an empty map.

 	If expanded value
 is null, set the @value
 entry of result to null and continue with the
 next key from element. Null values need to be preserved
 in this case as the meaning of an @type entry depends
 on the existence of an @value entry.

 	If expanded property is @language:

 	If value is not a string, an
 invalid language-tagged string
 error has been detected and processing is aborted.
 When the frameExpansion flag is set, value
 MAY be an empty map or an array of zero or more
 strings.

 	
 Otherwise, set expanded value to value.
 If value is not well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 When the frameExpansion flag is set,
 expanded value will be an
 array of one or more string values
 or an array containing an empty map.
 Note
Processors MAY normalize language tags to lower case.

 	If expanded property is @direction:

 	If processing mode is json-ld-1.0,
 continue with the next key from element.

 	If value is neither "ltr" nor "rtl", an
 invalid base direction
 error has been detected and processing is aborted.
 When the frameExpansion flag is set, value
 MAY be an empty map or an array of zero or more
 strings.

 	Otherwise, set expanded value to value.
 When the frameExpansion flag is set,
 expanded value will be an
 array of one or more string values
 or an array containing an empty map.

 	If expanded property is @index:

 	If value is not a string, an
 invalid @index value
 error has been detected and processing is aborted.

 	Otherwise,
 set expanded value to value.

 	If expanded property is @list:

 	If active property is null or
 @graph, continue with the next key
 from element to remove the free-floating list.

 	Otherwise, initialize expanded value to the result of using
 this algorithm recursively passing active context,
 active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags,
 ensuring that the result is an array..

 	If expanded property is @set, set
 expanded value to the result of using this algorithm
 recursively, passing active context,
 active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	If expanded property is @reverse:

 	If value is not a map, an
 invalid @reverse value
 error has been detected and processing is aborted.

 	Otherwise initialize expanded value to the result of using this
 algorithm recursively, passing active context,
 @reverse as active property,
 value as element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	If expanded value contains an @reverse entry,
 i.e., properties that are reversed twice, execute for each of its
 property and item the following steps:

 	Use add value to add item
 to the property entry in result
 using true for as array.

 	If expanded value contains an entry other than @reverse:

 	Set reverse map to the value
 of the @reverse entry in result,
 initializing it to an empty map, if necessary.

 	For each property and items in expanded value
 other than @reverse:

 	For each item in items:

 	If item is a value object or list object, an
 invalid reverse property value
 has been detected and processing is aborted.

 	Use add value to add item
 to the property entry in reverse map
 using true for as array.

 	Continue with the next key from element.

 	If expanded property is @nest,
 add key to nests, initializing it to an empty array,
 if necessary.
 Continue with the next key from element.

 	When the frameExpansion flag is set,
 if expanded property is any other
 framing keyword (@default,
 @embed, @explicit, @omitDefault, or
 @requireAll),
 set expanded value to the result of performing the
 Expansion Algorithm
 recursively, passing active context,
 active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	Unless expanded value is null,
 expanded property is @value,
 and input type is not @json,
 set the expanded property entry of result to
 expanded value.

 	Continue with the next key from element.

 	Initialize container mapping to key's container mapping in
 active context.

 	If key's term definition in active context
 has a type mapping of @json,
 set expanded value to a new map, set the entry
 @value to value, and set the entry @type to @json.

 	Otherwise, if container mapping includes @language and
 value is a map then value
 is expanded from a language map
 as follows:

 	Initialize expanded value to an empty
 array.

 	Initialize direction to the default base direction from active context.

 	If key's term definition in active context
 has a direction mapping,
 update direction with that value.

 	For each key-value pair language-language value
 in value, ordered lexicographically by language if ordered is true:

 	If language value is not an array
 set language value to an array containing only
 language value.

 	For each item in language value:

 	If item is null,
 continue to the next entry in language value.

 	item must be a string,
 otherwise an
 invalid language map value
 error has been detected and processing is aborted.

 	Initialize a new map v
 consisting of two
 key-value pairs: (@value-item)
 and (@language-language).
 If item is neither @none nor well-formed according to
 section 2.2.9 of [BCP47],
 processors SHOULD issue a warning.
 Note
Processors MAY normalize language tags to lower case.

 	If language is @none,
 or expands to @none, remove @language from v.

 	
 If direction is not null,
 add an entry for @direction to v with direction.

 	Append v to expanded value.

 	Otherwise, if container mapping
 includes @index,
 @type, or @id and
 value is a map then value
 is expanded from an map as follows:

 	Initialize expanded value to an empty array.

 	Initialize index key to
 the key's index mapping in active context,
 or @index, if it does not exist.

 	For each key-value pair index-index value
 in value, ordered lexicographically by index
 if ordered is true:

 	If container mapping includes @id or @type,
 initialize map context to the previous context
 from active context if it exists,
 otherwise, set map context to active context.

 	If container mapping includes @type
 and index's term definition in
 map context has a local context, update
 map context to the result of the
 Context Processing algorithm,
 passing map context as active context
 the value of the index's local context
 as local context
 and base URL from the term definition for index
 in map context.

 	Otherwise, set map context to active context.

 	Initialize expanded index to the result of
 IRI expanding index.

 	If index value is not an array
 set index value to an array containing only
 index value.

 	Initialize index value to the result of
 using this algorithm recursively, passing
 map context as active context,
 key as active property,
 index value as element,
 base URL,
 true for from map,
 and the frameExpansion
 and ordered flags.

 	For each item in index value:

 	If container mapping includes @graph,
 and item is not a graph object,
 set item to a new map containing the key-value pair
 @graph-item,
 ensuring that the value is represented using an array.

 	If container mapping includes @index,
 index key is not @index,
 and expanded index is not @none:

 	Initialize re-expanded index to the result of calling
 the Value Expansion algorithm,
 passing the active context,
 index key as active property,
 and index as value.

 	Initialize expanded index key to the result of
 IRI expanding index key.

 	Initialize index property values to
 an array consisting of re-expanded index followed
 by the existing values of
 the concatenation of expanded index key in item,
 if any.

 	Add the key-value pair (expanded index key-index property values)
 to item.

 	If item is a value object,
 it MUST NOT contain any extra properties;
 an invalid value object
 error has been detected and processing is aborted.

 	Otherwise, if container mapping includes @index,
 item does not have an entry @index,
 and expanded index is not @none,
 add the key-value pair (@index-index) to item.

 	Otherwise, if container mapping includes @id
 item does not have the entry @id,
 and expanded index is not @none,
 add the key-value pair (@id-expanded index) to item,
 where expanded index is set to the result of
 IRI expandingindex
 using true for document relative
 and false for vocab.

 	Otherwise, if container mapping includes @type
 and expanded index is not @none,
 initialize types to a new array
 consisting of expanded index followed by any existing
 values of @type in item.
 Add the key-value pair (@type-types) to item.

 	Append item to expanded value.

 	Otherwise, initialize expanded value to the result of
 using this algorithm recursively, passing active context,
 key for active property, value for element,
 base URL,
 and the frameExpansion
 and ordered flags.

 	If expanded value is null, ignore key
 by continuing to the next key from element.

 	If container mapping includes @list and
 expanded value is not already a list object,
 convert expanded value to a list object
 by first setting it to an array containing only
 expanded value if it is not already an array,
 and then by setting it to a map containing
 the key-value pair @list-expanded value.

 	If container mapping includes
 @graph,
 and includes neither @id nor @index,
 convert expanded value into an array, if necessary,
 then convert each value ev in expanded value into a
 graph object:

 	Convert ev into
 a graph object by creating a map containing the key-value
 pair @graph-ev
 where ev is represented as an array.
 Note
This may lead to a graph object including another graph object,
 if ev was already in the form of a graph object.

 	If the term definition associated to
 key indicates that it is a reverse property

 	If result has no @reverse entry, create
 one and initialize its value to an empty map.

 	Reference the value of the @reverse entry in result
 using the variable reverse map.

 	If expanded value is not an array, set
 it to an array containing expanded value.

 	For each item in expanded value

 	If item is a value object or list object, an
 invalid reverse property value
 has been detected and processing is aborted.

 	If reverse map has no expanded property entry,
 create one and initialize its value to an empty array.

 	Use add value to add item
 to the expanded property entry in reverse map
 using true for as array.

 	Otherwise, key is not a reverse property
 use add value to add expanded value
 to the expanded property entry in result
 using true for as array.

 	For each key nesting-key in nests,
 ordered lexicographically if ordered is true:

 	Initialize nested values to the value of nesting-key
 in element, ensuring that it is an array.

 	For each nested value in nested values:

 	If nested value is not a map, or any key within
 nested value expands to @value, an
 invalid @nest value error
 has been detected and processing is aborted.

 	Recursively repeat steps 13
 and 14
 using nested value for element.
 Note
By invoking steps 13
 and 14 on nested value
 we are able to unfold arbitrary levels of nesting, with results being merged into
 result.
 Step 13 iterates through each
 entry in nested value and expands it, while collecting new
 nested values found at each level, until all nesting has been extracted.

 	If result contains the entry @value:

 	The result must not contain any entries other than
 @direction,
 @index,
 @language,
 @type,
 and @value.
 It must not contain an @type entry if it contains either @language or @direction entries.
 Otherwise, an invalid value object
 error has been detected and processing is aborted.

 	If the result's @type entry
 is @json, then the @value entry may
 contain any value, and is treated as a JSON literal.

 	Otherwise, if the value of result's @value entry is
 null, or an empty array, return null.

 	Otherwise, if the value of result's @value entry
 is not a string and result contains the entry
 @language, an
 invalid language-tagged value
 error has been detected (only strings
 can be language-tagged) and processing is aborted.

 	Otherwise, if the result has an @type entry
 and its value is not an IRI, an
 invalid typed value
 error has been detected and processing is aborted.

 	Otherwise, if result contains the entry @type
 and its associated value is not an array, set it to
 an array containing only the associated value.

 	Otherwise, if result contains the entry @set
 or @list:

 	The result must contain at most one other entry
 which must be @index. Otherwise, an
 invalid set or list object
 error has been detected and processing is aborted.

 	If result contains the entry @set, then
 set result to the entry's associated value.

 	If result is a map that contains only the entry
 @language, return null.

 	If active property is null or @graph,
 drop free-floating values as follows:

 	If result is a map which is empty,
 or contains only the entries @value or @list,
 set result to null.

 	Otherwise, if result is a map whose only
 entry is @id, set result to null.

 When the frameExpansion flag is set, a map
 containing only the @id entry is retained.

 	Return result.

 5.2 IRI Expansion

 In JSON-LD documents, some keys and values may represent
 IRIs. This section defines an algorithm for
 transforming a string that represents an IRI into
 an absolute IRI or blank node identifier.
 It also covers transforming keyword aliases
 into keywords.

 IRI expansion may occur during context processing or during
 any of the other JSON-LD algorithms. If IRI expansion occurs during context
 processing, then the local context and its related defined
 map from the Context Processing algorithm
 are passed to this algorithm. This allows for term definition
 dependencies to be processed via the
 Create Term Definition algorithm.

 5.2.1 Overview
This section is non-normative.

 In order to expand value to an IRI, we must
 first determine if it is null, a term, a
 keyword alias, or some form of IRI. Based on what
 we find, we handle the specific kind of expansion; for example, we expand
 a keyword alias to a keyword and a term
 to an IRI according to its IRI mapping
 in the active context. While inspecting value we
 may also find that we need to create term definition
 dependencies because we're running this algorithm during context processing.
 We can tell whether or not we're running during context processing by
 checking local context against null.
 We know we need to create a term definition in the
 active context when value is
 an entry in the local context and the defined map
 does not have an entry for value with an associated value of
 true. The defined map is used during
 Context Processing to keep track of
 which terms have already been defined or are
 in the process of being defined. We create a
 term definition by using the
 Create Term Definition algorithm.

 Note
Values that have the form of a keyword,
 but are not keywords (i.e., they begin with "@") do not
 map to any value, as they are reserved for future use.
 The algorithm returns null, so that they will be ignored when encountered.

 5.2.2 Algorithm

 The algorithm takes two required and four optional input variables. The
 required inputs are an active context and a value
 to be expanded. The optional inputs are two flags,
 document relative and vocab, that specifying
 whether value can be interpreted as a relative IRI reference
 against the document's base IRI or the
 active context's
 vocabulary mapping, respectively, and
 a local context and a map defined to be used when
 this algorithm is used during Context Processing.
 If not passed, the two flags are set to false and
 local context and defined are initialized to null.

 	If value is a keyword or null,
 return value as is.

 	
 If value has the form of a keyword
 (i.e., it matches the ABNF rule "@"1*ALPHA from [RFC5234]),
 a processor SHOULD generate a warning and return null.

 	If local context is not null, it contains
 an entry with a key that equals value, and the value of the entry
 for value in defined is not true,
 invoke the Create Term Definition algorithm,
 passing active context, local context,
 value as term, and defined. This will ensure that
 a term definition is created for value in
 active context during Context Processing.

 	If active context has a term definition for
 value, and the associated IRI mapping is a keyword,
 return that keyword.

 	If vocab is true and the
 active context has a term definition for
 value, return the associated IRI mapping.

 	If value contains a colon (:)
 anywhere after the first character,
 it is either
 an IRI, a compact IRI, or a
 blank node identifier:

 	Split value into a prefix and suffix
 at the first occurrence of a colon (:).

 	If prefix is underscore (_)
 or suffix begins with double-forward-slash
 (//), return value as it is already an
 IRI or a blank node identifier.

 	If local context is not null, it
 contains a prefix entry, and the value
 of the prefix entry in defined
 is not true, invoke the
 Create Term Definition algorithm,
 passing active context,
 local context, prefix as term,
 and defined. This will ensure that a
 term definition is created for prefix
 in active context during
 Context Processing.

 	If active context contains a term definition
 for prefix
 having a non-null IRI mapping
 and the prefix flag of the term definition is true,
 return the result of concatenating the IRI mapping
 associated with prefix and suffix.

 	If value has the form of an IRI,
 return value.

 	If vocab is true, and
 active context has a vocabulary mapping,
 return the result of concatenating the vocabulary mapping
 with value.

 	Otherwise, if document relative is true
 set value to the result of resolving value against
 the base IRI from active context. Only the basic algorithm in
 section 5.2
 of [RFC3986] is used; neither
 Syntax-Based Normalization nor
 Scheme-Based Normalization
 are performed. Characters additionally allowed in IRI references are treated
 in the same way that unreserved characters are treated in URI references, per
 section 6.5
 of [RFC3987].

 	Return value as is.

 5.3 Value Expansion

 Some values in JSON-LD can be expressed in a
 compact form. These values are required
 to be expanded at times when processing
 JSON-LD documents. A value is said to be in expanded form
 after the application of this algorithm.

 5.3.1 Overview
This section is non-normative.

 If active property has a type mapping in the
 active context set to @id or @vocab,
 and the value is a string,
 a map with a single entry @id whose
 value is the result of using the
 IRI Expansion algorithm on value
 is returned.

 Otherwise, the result will be a map containing
 an @value entry whose value is the passed value.
 Additionally, an @type entry will be included if there is a
 type mapping associated with the active property
 or an @language entry if value is a
 string and there is language mapping associated
 with the active property.

 Note that values interpreted as IRIs fall into two categories:
 those that are document relative, and those that are
 vocabulary relative. Properties and values of @type,
 along with terms marked as "@type": "@vocab"
 are vocabulary relative, meaning that they need to be either
 a defined term, a compact IRI
 where the prefix is a term,
 or a string which is turned into an IRI using
 the vocabulary mapping.

 5.3.2 Algorithm

 The algorithm takes three required inputs: an active context,
 an active property, and a value to expand.

 	If the active property has a type mapping
 in active context that is @id,
 and the value is a string,
 return a new
 map containing a single entry where the
 key is @id and the value is the result
 IRI expanding value
 using true for document relative
 and false for vocab.

 	If active property has a type mapping in
 active context that is @vocab,
 and the value is a string,
 return a new
 map containing a single entry where the
 key is @id and the value is the result of
 IRI expanding value
 using true for document relative.

 	Otherwise, initialize result to a map
 with an @value entry whose value is set to
 value.

 	If active property has a type mapping in
 active context,
 other than @id, @vocab, or @none,
 add @type to
 result and set its value to the value associated with the
 type mapping.

 	Otherwise, if value is a string:

 	Initialize language to the language mapping for active property
 in active context, if any, otherwise to the default language
 of active context.

 	Initialize direction to the direction mapping for active property
 in active context, if any, otherwise to the default base direction
 of active context.

 	If language is not null,
 add @language to result with the value language.

 	If direction is not null,
 add @direction to result with the value direction.

 	Return result.

6. Compaction Algorithms

 The following sections describe algorithms for compacting JSON-LD
 documents, IRIs and values.

 6.1 Compaction Algorithm

 This algorithm compacts a JSON-LD document, such that the given
 context is applied. This must result in shortening
 any applicable IRIs to
 terms or
 compact IRIs, any applicable
 keywords to
 keyword aliases, and
 any applicable JSON-LD values
 expressed in expanded form to simple values such as
 strings or
 numbers.

 6.1.1 Overview
This section is non-normative.

 Starting with its root element, we can process the
 JSON-LD document recursively, until we have a fully
 compacted result. When
 compacting an element, we can treat
 each one differently according to its type, in order to break down the
 problem:

 	If the element is a scalar, it is
 already in compacted form, so we simply return it.

 	If the element is an array, we compact
 each of its items recursively and return them in a new
 array.

 	Otherwise element is a map. The value
 of each entry in element is compacted recursively. Some of the entry keys will be
 compacted, using the IRI Compaction algorithm,
 to terms or compact IRIs
 and others will be compacted from keywords to
 keyword aliases or simply left
 unchanged because they do not have definitions in the context.
 Values will be converted to compacted form via the
 Value Compaction algorithm. Some data
 will be reshaped based on container mapping
 specified in the context such as @index or @language
 maps.

 6.1.2 Algorithm

 The algorithm takes three required and two optional input variables.
 The required inputs are an active context,
 an active property,
 and an element to be compacted.
 The optional inputs are the
 compactArrays flag
 and the ordered flag, used to order
 map entry keys lexicographically, where noted.
 If not passed, both flags are set to false.

 	Initialize type-scoped context to active context.
 This is used for compacting values that may be relevant to any previous
 type-scoped context.

 	If element is a scalar, it is already in its most
 compact form, so simply return element.

 	If element is an array:

 	Initialize result to an empty array.

 	For each item in element:

 	Initialize compacted item to the result of using this
 algorithm recursively, passing active context,
 active property,
 item for element,
 and the compactArrays
 and ordered flags.

 	If compacted item is not null, then append
 it to result.

 	If result is empty or contains more than one value,
 or compactArrays is false,
 or active property is either @graph or @set,
 or container mapping for active property in
 active context includes either @list or @set,
 return result.

 	Otherwise, return the value in result.

 	Otherwise element is a map.

 	If active context has a previous context,
 the active context is not propagated.
 If element does not contain an @value entry,
 and element does not consist of a single @id entry,
 set active context to previous context from active context,
 as the scope of a term-scoped context does not apply when processing new node objects.

 	If the term definition for active property in active context
 has a local context:

 	Set active context to the result of the
 Context Processing algorithm,
 passing active context,
 the value of the active property's local context as local context,

 base URL from the term definition for active property
 in active context,
 and true for override protected.

 	If element has an @value or @id
 entry and the result of using the
 Value Compaction algorithm,
 passing active context,
 active property, and element as value is
 a scalar,
 or the term definition for active property
 has a type mapping of @json,
 return that result.

 	If element is a
 list object, and the container mapping for
 active property in active context includes @list,
 return the result of using this algorithm recursively, passing
 active context,
 active property, value of @list
 in element for element,
 and the compactArrays
 and ordered flags.

 	Initialize inside reverse to true if
 active property equals @reverse,
 otherwise to false.

 	Initialize result to an empty map.

 	If element has an @type entry,
 create a new array compacted types initialized
 by transforming each expanded type of that entry
 into its compacted form
 by IRI compacting expanded type.
 Then, for each term
 in compacted types ordered lexicographically:

 	If the term definition for term in type-scoped context has a
 local context
 set active context to the result of the
 Context Processing algorithm,
 passing active context and the value of term's
 local context in type-scoped context as local context

 base URL from the term definition for term
 in type-scoped context,
 and false for propagate.

 	For each key expanded property and value expanded value
 in element, ordered lexicographically by expanded property
 if ordered is true:

 	If expanded property is @id:

 	If expanded value is a string,
 then initialize compacted value
 by IRI compacting expanded value
 with vocab set to false.

 	Initialize alias
 by IRI compacting expanded property.

 	Add an entry alias to result whose value is
 set to compacted value and continue to the next
 expanded property.

 	If expanded property is @type:

 	If expanded value is a string,
 then initialize compacted value
 by IRI compacting expanded value
 using type-scoped context for active context.

 	Otherwise, expanded value must be a
 @type array:

 	Initialize compacted value to an empty
 array.

 	For each item expanded type in
 expanded value:

 	Set term
 by IRI compacting expanded type
 using type-scoped context for active context.

 	Append term, to compacted value.

 	Initialize alias
 by IRI compacting expanded property.

 	Initialize as array
 to true if processing mode is json-ld-1.1 and
 the container mapping for alias in the
 active context includes @set,
 otherwise to the negation of compactArrays.

 	Use add value to add compacted value
 to the alias entry in result
 using as array.

 	Continue to the next expanded property.

 	If expanded property is @reverse:

 	Initialize compacted value to the result of using this
 algorithm recursively, passing active context,
 @reverse for
 active property, expanded value
 for element,
 and the compactArrays
 and ordered flags.

 	For each property and value in compacted value:

 	If the term definition for property in the
 active context indicates that property is
 a reverse property

 	Initialize as array
 to true if the container mapping for property in the
 active context includes @set,
 otherwise the negation of compactArrays.

 	Use add value to add value
 to the property entry in result
 using as array.

 	Remove the property entry from
 compacted value.

 	If compacted value has some remaining map entries, i.e.,
 it is not an empty map:

 	Initialize alias
 by IRI compacting @reverse.

 	Set the value of the alias entry of result to
 compacted value.

 	Continue with the next expanded property from element.

 	If expanded property is @preserve
 then:

 	Initialize compacted value to the result of using this
 algorithm recursively, passing
 active context,
 active property,
 expanded value for element,
 and the compactArrays
 and ordered flags.

 	Add compacted value as the value of @preserve
 in result unless expanded value is an empty array.

 	If expanded property is @index and
 active property has a container mapping
 in active context that includes @index,
 then the compacted result will be inside of an @index
 container, drop the @index entry by continuing
 to the next expanded property.

 	Otherwise, if expanded property is
 @direction,
 @index,
 @language,
 or @value:

 	Initialize alias
 by IRI compacting expanded property.

 	Add an entry alias to result whose value is
 set to expanded value and continue with the next
 expanded property.

 	If expanded value is an empty array:

 	Initialize item active property
 by IRI compacting expanded property
 using expanded value for value
 and inside reverse for reverse.

 	If the term definition for item active property
 in the active context has a nest value
 entry (nest term):

 	If nest term is not @nest,
 or a term in the active context that expands to @nest,
 an invalid @nest value
 error has been detected, and processing is aborted.

 	If result does not have a nest term entry,
 initialize it to an empty map.

 	Initialize nest result to the value of nest term in result.

 	Otherwise, initialize nest result to result.

 	Use add value to add an empty array
 to the item active property entry in nest result
 using true for as array.

 	
 At this point, expanded value must be an
 array due to the
 Expansion algorithm.
 For each item expanded item in expanded value:

 	Initialize item active property
 by IRI compacting expanded property
 using expanded item for value
 and inside reverse for reverse.

 	If the term definition for item active property
 in the active context has a nest value
 entry (nest term):

 	If nest term is not @nest,
 or a term in the active context that expands to @nest,
 an invalid @nest value
 error has been detected, and processing is aborted.

 	If result does not have a nest term entry,
 initialize it to an empty map.

 	Initialize nest result to the value of nest term in result.

 	Otherwise, initialize nest result to result.

 	Initialize container to container mapping for
 item active property in active context,
 or to a new empty array, if there is no such container mapping.

 	Initialize as array
 to true if container includes @set,
 or if item active property is @graph or @list,
 otherwise the negation of compactArrays.

 	Initialize compacted item to the result of using
 this algorithm recursively, passing
 active context,
 item active property for active property,
 expanded item for element,
 along with the compactArrays
 and ordered flags.
 If expanded item is a list object or a graph object,
 use the value of the @list or @graph entries,
 respectively, for element instead of expanded item.

 	If expanded item is a list object:

 	If compacted item is not an array,
 then set compacted item to an array containing only
 compacted item.

 	If container does not include @list:

 	Convert compacted item to a
 list object by setting it to a
 map containing an entry
 where the key is the result of
 IRI compacting @list
 and the value is the original compacted item.

 	If expanded item contains the entry
 @index-value, then add an entry
 to compacted item where the key is the
 result of
 IRI compacting @index
 and value is value.

 	Use add value to add compacted item
 to the item active property entry in
 nest result
 using as array.

 	Otherwise, set the value of the item active property entry
 in nest result to compacted item.

 	If expanded item is a graph object:

 	If container includes @graph and @id:

 	Initialize map object to the value of item active property
 in nest result,
 initializing it to a new empty map, if necessary.

 	Initialize map key
 by IRI compacting
 the value of @id in expanded item
 or @none if no such value exists
 with vocab set to false
 if there is an @id entry in expanded item.

 	Use add value to add compacted item
 to the map key entry in map object
 using as array.

 	Otherwise, if container includes @graph and @index
 and expanded item is a simple graph object:

 	Initialize map object to the value of item active property
 in nest result,
 initializing it to a new empty map, if necessary.

 	Initialize map key the value of @index in
 expanded item or @none, if no such
 value exists.

 	Use add value to add compacted item
 to the map key entry in map object
 using as array.

 	Otherwise, if container includes @graph
 and expanded item is a simple graph object
 the value cannot be represented as a map object.

 	If compacted item is an array
 with more than one value, it cannot be directly represented,
 as multiple objects would be interpreted as different named graphs.
 Set compacted item to a new map,
 containing the key
 from IRI compacting @included
 and the original compacted item as the value.

 	Use add value to add compacted item
 to the item active property entry in nest result
 using as array.

 	Otherwise, container does not include @graph
 or otherwise does not match one of the previous cases.

 	Set compacted item to a new map containing
 the key
 from IRI compacting @graph
 using the original compacted item as a value.

 	If expanded item contains an @id entry,
 add an entry in compacted item using the key
 from IRI compacting @id
 using the value
 of IRI compacting the value of @id in expanded item
 using false for vocab.

 	If expanded item contains an @index entry,
 add an entry in compacted item using the key
 from IRI compacting @index
 and the value of @index in expanded item.

 	Use add value to add compacted item
 to the item active property entry in nest result
 using as array.

 	
 Otherwise, if container includes @language,
 @index, @id,
 or @type
 and container does not include @graph:

 	Initialize map object to the value of item active property
 in nest result,
 initializing it to a new empty map, if necessary.

 	Initialize container key
 by IRI compacting
 either @language, @index, @id, or @type
 based on the contents of container.

 	Initialize index key to the value of index mapping in
 the term definition associated with item active property in active context,
 or @index, if no such value exists.

 	If container includes @language and
 expanded item contains a
 @value entry, then set compacted item
 to the value associated with its @value entry.
 Set map key to the value of @language in expanded item, if any.

 	Otherwise, if container includes @index
 and index key is @index,
 set map key to the value of @index in expanded item, if any.

 	Otherwise, if container includes @index
 and index key is not @index:

 	Reinitialize container key by IRI compacting
 index key.

 	Set map key to the first value of container key in compacted item, if any.

 	If there are remaining values in compacted item
 for container key, use add value to
 add those remaining values to the container key in compacted item.
 Otherwise, remove that entry from compacted item.

 	Otherwise, if container includes @id, set
 map key to the value of container key in
 compacted item and remove container key from compacted item.

 	Otherwise, if container includes @type:

 	Set map key to the first value of container key in compacted item, if any.

 	If there are remaining values in compacted item
 for container key, use add value to
 add those remaining values to the container key in compacted item.

 	Otherwise, remove that entry from compacted item.

 	If compacted item contains a single entry with a key expanding
 to @id, set compacted item
 to the result of using
 this algorithm recursively, passing
 active context,
 item active property for active property,
 and a map composed of the single entry for @id from expanded item for element.

 	If map key is null,
 set it to the result of
 IRI compacting @none.

 	Use add value to add compacted item
 to the map key entry in map object
 using as array.

 	Otherwise, use add value to add compacted item
 to the item active property entry in nest result
 using as array.

 	Return result.

 6.2 IRI Compaction

 This algorithm compacts an IRI to a term or
 compact IRI, or a keyword to a
 keyword alias. A value that is associated with the
 IRI may be passed in order to assist in selecting the most
 context-appropriate term.

 6.2.1 Overview
This section is non-normative.

 If the passed IRI is null,
 we simply return null.
 Otherwise, we first try to find a term that the IRI or keyword
 can be compacted to if it is relative to
 active context's vocabulary mapping.
 In order to select the most appropriate term,
 we may have to collect information about the passed value.
 This information includes determining the preferred container mapping,
 type mapping or language mapping
 for expressing the value.
 For JSON-LD lists, the type mapping
 or language mapping will be chosen based on the most
 specific values that work for all items in the list.
 Once this information is gathered,
 it is passed to the Term Selection algorithm,
 which will return the most appropriate term.

 If no term was found that could be used to compact the IRI,
 an attempt is made to compact the IRI
 using the active context's vocabulary mapping,
 if there is one.
 If the IRI could not be compacted,
 an attempt is made to find a compact IRI.
 A term will be used to create a compact IRI
 only if the term definition contains the prefix flag
 with the value true.
 If there is no appropriate compact IRI,
 and the compactToRelative option is true,
 the IRI is transformed to a relative IRI reference
 using the document's base IRI.
 Finally, if the IRI or keyword still could not be compacted,
 it is returned as is.

 When considering language mapping,
 the direction mapping is also considered, either with, or without,
 a language mapping,
 and the language mapping is normalized to lower case.

 In the case were this algorithm would return the input IRI as is,
 and that IRI can be mistaken for a compact IRI in the active context,
 this algorithm will raise an error,
 because it has no way to return an unambiguous representation of the original IRI.

 6.2.2 Algorithm

 This algorithm takes two required inputs and three optional inputs.
 The required inputs are an active context,
 and the var to be compacted.
 The optional inputs are a value associated with the var,
 a vocab flag which specifies whether the passed var
 should be compacted using the active context's vocabulary mapping,
 and a reverse flag which specifies whether a reverse property is being compacted.
 If not passed, value is set to null
 and both vocab and reverse are both set to false.

 	If var is null, return null.

 	If the active context has a null
 inverse context,
 set inverse context in active context
 to the result of calling the
 Inverse Context Creation algorithm
 using active context.

 	Initialize inverse context to the value of
 inverse context in active context.

 	If vocab is true and var is an
 entry of inverse context:

 	Initialize default language
 based on the active context's
 default language, normalized to lower case and default base direction:

 	If the active context's default base direction
 is not null, to the concatenation of
 the active context's default language
 and default base direction, separated by an underscore ("_"),
 normalized to lower case.

 	Otherwise, to the active context's default language,
 if it has one,
 normalized to lower case,
 otherwise to @none.

 	If value is a map containing an @preserve entry,
 use the first element from the value of @preserve as value.

 	Initialize containers to an empty array. This
 array will be used to keep track of an ordered list of
 preferred container mapping for a term,
 based on what is compatible with value.
 Note

 Algorithm steps may append the same value to containers,
 but the order in which they are added is significant for choosing the most appropriate term.

 	Initialize type/language to @language,
 and type/language value to @null. These two
 variables will keep track of the preferred
 type mapping or language mapping for
 a term, based on what is compatible with value.

 	If value is a map containing an @index entry,
 and value is not a graph object
 then append the values @index and @index@set to containers.

 	If reverse is true, set type/language
 to @type, type/language value to
 @reverse, and append @set to containers.

 	Otherwise, if value is a list object, then set
 type/language and type/language value
 to the most specific values that work for all items in
 the list as follows:

 	If @index is not an entry in value, then
 append @list to containers.

 	Initialize list to the array associated
 with the @list entry in value.

 	Initialize common type and common language to null. If
 list is empty, set common language to
 default language.

 	For each item in list:

 	Initialize item language to @none and
 item type to @none.

 	If item contains an @value entry:

 	If item contains an @direction entry,
 then set item language to the concatenation of
 the item's @language entry (if any)
 the item's @direction, separated by an underscore ("_"),
 normalized to lower case.

 	Otherwise, if item contains an @language entry,
 then set item language to its associated value,
 normalized to lower case.

 	Otherwise, if item contains a
 @type entry, set item type to its
 associated value.

 	Otherwise, set item language to
 @null.

 	Otherwise, set item type to @id.

 	If common language is null,
 set common language to item language.

 	Otherwise, if item language does not equal
 common language and item contains a
 @value entry, then set common language
 to @none because list items have conflicting
 languages.

 	If common type is null,
 set common type to item type.

 	Otherwise, if item type does not equal
 common type, then set common type
 to @none because list items have conflicting
 types.

 	If common language is @none and
 common type is @none, then
 stop processing items in the list because it has been
 detected that there is no common language or type amongst
 the items.

 	If common language is null,
 set common language to @none.

 	If common type is null,
 set common type to @none.

 	If common type is not @none then set
 type/language to @type and
 type/language value to common type.

 	Otherwise, set type/language value to
 common language.

 	Otherwise, if value is a graph object,
 prefer a mapping most appropriate for the particular value.

 	If value contains an @index entry,
 append the values @graph@index and @graph@index@set
 to containers.

 	If value contains an @id entry,
 append the values @graph@id and @graph@id@set
 to containers.

 	Append the values @graph @graph@set,
 and @set
 to containers.

 	If value does not contain an @index entry,
 append the values @graph@index and @graph@index@set
 to containers.

 	If the value does not contain an @id entry,
 append the values @graph@id and @graph@id@set
 to containers.

 	Append the values @index and @index@set
 to containers.

 	Set type/language to @type
 and set type/language value to @id.

 	Otherwise:

 	If value is a value object:

 	If value contains an @direction entry
 and does not contain an @index entry,
 then set type/language value to the concatenation of
 the value's @language entry (if any)
 and the value's @direction entry, separated by an underscore ("_"),
 normalized to lower case.
 Append @language and @language@set to containers.

 	Otherwise, if value contains an @language entry
 and does not contain an @index entry,
 then set type/language value to
 the value of @language normalized to lower case,
 and append @language,
 and @language@set to
 containers.

 	Otherwise, if value contains an
 @type entry, then set type/language value to
 its associated value and set type/language to
 @type.

 	Otherwise, set type/language to @type
 and set type/language value to @id,
 and append @id, @id@set,
 @type, and @set@type,
 to containers.

 	Append @set to containers.

 	Append @none to containers. This represents
 the non-existence of a container mapping, and it will
 be the last container mapping value to be checked as it
 is the most generic.

 	
 If processing mode is not json-ld-1.0 and value is not a map
 or does not contain an @index entry,
 append @index and @index@set to containers.

	
 If processing mode is not json-ld-1.0 and
 value is a map containing only an @value entry,
 append @language and @language@set to containers.

 	If type/language value is null,
 set type/language value to @null.
 This is the key under which null values
 are stored in the inverse context entry.

 	Initialize preferred values to an empty array.
 This array will indicate, in order, the preferred values for
 a term's type mapping or
 language mapping.

 	If type/language value is @reverse, append
 @reverse to preferred values.

 	If type/language value is @id or @reverse and
 value is a map containing an @id entry:

 	If the result of
 IRI compacting
 the value of the @id entry in value
 has a term definition in the active context
 with an IRI mapping that equals the value of the @id entry in value,
 then append @vocab, @id, and
 @none, in that order, to preferred values.

 	Otherwise, append @id, @vocab, and
 @none, in that order, to preferred values.

 	Otherwise, append type/language value and @none, in
 that order, to preferred values.
 If value is a list object
 with an empty array as the value of @list,
 set type/language to @any.

 	Append @any to preferred values.

 	If preferred values
 contains any entry having an underscore ("_"),
 append the substring of that entry from the underscore to the end of the string
 to preferred values.

 	Initialize term to the result of the
 Term Selection algorithm, passing
 var, containers,
 type/language, and preferred values.

 	If term is not null, return term.

 	At this point, there is no simple term that var
 can be compacted to. If vocab is true and
 active context has a vocabulary mapping:

 	If var begins with the
 vocabulary mapping's value
 but is longer, then initialize suffix to the substring
 of var that does not match. If suffix does not
 have a term definition in active context,
 then return suffix.

 	The var could not be compacted using the
 active context's vocabulary mapping.
 Try to create a compact IRI, starting by initializing
 compact IRI to null. This variable will be used to
 store the created compact IRI, if any.

 	For each term definition definition in active context:

 	If the IRI mapping of definition is null,
 its IRI mapping equals var,
 its IRI mapping is not a substring at the beginning of
 var,
 or definition does not have
 a true prefix flag,
 definition's key cannot be used as a prefix.
 Continue with the next definition.

 	Initialize candidate by concatenating definition key,
 a colon (:), and the substring of var
 that follows after the value of the
 definition's IRI mapping.

 	If either compact IRI is null, candidate is
 shorter or the same length but lexicographically less than
 compact IRI and candidate does not have a
 term definition in active context, or if that
 term definition has an IRI mapping
 that equals var and value is null,
 set compact IRI to candidate.

 	If compact IRI is not null, return compact IRI.

 	To ensure that the IRI var is
 not confused with a compact IRI,
 if the IRI scheme of var
 matches any term in active context with prefix flag set to true,
 and var has no IRI authority (preceded by double-forward-slash (//),
 an IRI confused with prefix error has been detected,
 and processing is aborted.

 	If vocab is false,
 transform var to a relative IRI reference using
 the base IRI from active context, if it exists.

 	Finally, return var as is.

 6.3 Value Compaction

 Expansion transforms all values into expanded form
 in JSON-LD. This algorithm performs the opposite operation, transforming
 a value into compacted form. This algorithm compacts a
 value according to the term definition in the given
 active context that is associated with the value's associated
 active property.

 6.3.1 Overview
This section is non-normative.

 The value to compact has either an @id or an
 @value entry.

 For the former case, if the type mapping of
 active property is set to @id or @vocab
 and value consists of only an @id entry and, if
 the container mapping of active property
 includes @index, an @index entry, value
 can be compacted to a string by returning the result of
 using the IRI Compaction algorithm
 to compact the value associated with the @id entry.
 Otherwise, value cannot be compacted and is returned as is.

 For the latter case, it might be possible to compact value
 just into the value associated with the @value entry.
 This can be done if the active property has a matching
 type mapping or language mapping and there
 is either no @index entry or the container mapping
 of active property includes @index. It can
 also be done if @value is the only entry in value
 (apart an @index entry in case the container mapping
 of active property includes @index) and
 either its associated value is not a string, there is
 no default language, or there is an explicit
 null language mapping for the
 active property.

 6.3.2 Algorithm

 This algorithm has three required inputs: an active context,
 an active property, and a value
 to be compacted.

 	Initialize result to a copy of value.

 	If the active context has a null
 inverse context,
 set inverse context in active context
 to the result of calling the
 Inverse Context Creation algorithm
 using active context.

 	Initialize inverse context to the value of
 inverse context in active context.

 	Initialize language to the language mapping for active property
 in active context, if any, otherwise to the default language
 of active context.

 	Initialize direction to the direction mapping for active property
 in active context, if any, otherwise to the default base direction
 of active context.

 	If value has an @id entry
 and has no other entries other than @index:

 	If the type mapping of active property
 is set to @id, set result to the result of
 IRI compacting
 the value associated with the @id entry
 using false for vocab.

 	Otherwise, if the type mapping of active property
 is set to @vocab, set result to the result of
 IRI compacting
 the value associated with the @id entry.

 	Otherwise, if value has an @type entry whose
 value matches the type mapping of active property,
 set result to the value associated with the @value entry
 of value.

 	Otherwise, if the type mapping of active property is @none,
 or value has an @type entry,
 and the value of @type in value does not match the type mapping of active property,
 leave value as is, as value compaction is disabled.

 	Replace any value of @type in result with the result of
 IRI compacting
 the value of the @type entry.

 	Otherwise, if the value of the @value entry is not a string:

 	If value has an @index entry,
 and the container mapping associated to active property
 includes @index,
 or if value has no @index entry,
 set result to the value associated with the @value entry.

 	Otherwise, if value has an @language entry
 whose value exactly matches language,
 using a case-insensitive comparison
 if it is not null, or is not present, if language is null,
 and the value has an @direction entry
 whose value exactly matches direction,
 if it is not null, or is not present, if direction is null:

 	If value has an @index entry,
 and the container mapping associated to active property
 includes @index,
 or value has no @index entry,
 set result to the value associated with the @value entry.

 	If result is a map,
 replace each key in result with the result of
 IRI compacting that key.

 	Return result.

7. Flattening Algorithms

 The following sections describe algorithms for flattening JSON-LD documents,
 creating node maps, and generating blank nodes.

 7.1 Flattening Algorithm

 This algorithm flattens an expanded JSON-LD document by collecting all
 properties of a node in a single map
 and labeling all blank nodes with
 blank node identifiers.
 This resulting uniform shape of the document, may drastically simplify
 the code required to process JSON-LD data in certain applications.

 7.1.1 Overview
This section is non-normative.

 First, a node map is generated using the
 Node Map Generation algorithm
 which collects all properties of a node in a single
 map. In the next step, the node map is
 converted to a JSON-LD document in
 flattened document form.

 7.1.2 Algorithm

 The algorithm takes one required and one optional input variables.
 The required input is an element to flatten.
 The optional input is
 the ordered flag, used to order
 map entry keys lexicographically, where noted.
 If not passed, the ordered flag is set to false.

 This algorithm uses the
 Generate Blank Node Identifier algorithm
 to generate new blank node identifiers
 and relabel existing blank node identifiers.
 The Generate Blank Node Identifier algorithm
 maintains an identifier map
 to ensure that blank node identifiers in the source
 document are consistently remapped to new blank node identifiers
 avoiding collisions.
 Thus, before this algorithm is run, the identifier map is reset.

 	Initialize node map to a map consisting of
 a single entry whose key is @default and whose value is
 an empty map.

 	Perform the Node Map Generation algorithm, passing
 element and node map.

 	Initialize default graph to the value of the @default
 entry of node map, which is a map representing
 the default graph.

 	For each key-value pair graph name-graph in node map
 where graph name is not @default,
 ordered lexicographically by graph name
 if ordered is true,
 perform the following steps:

 	If default graph does not have a graph name entry, create
 one and initialize its value to a map consisting of an
 @id entry whose value is set to graph name.

 	Reference the value associated with the graph name entry in
 default graph using the variable entry.

 	Add an @graph entry to entry and set it to an
 empty array.

 	For each id-node pair in graph ordered lexicographically by id
 if ordered is true,
 add node to the @graph entry of entry,
 unless the only entry of node is @id.

 	Initialize an empty array flattened.

 	For each id-node pair in default graph ordered lexicographically by id
 if ordered is true,
 add node to flattened,
 unless the only entry of node is @id.

 	Return flattened.

 7.2 Node Map Generation

 This algorithm creates a map node map holding an indexed
 representation of the graphs and nodes
 represented in the passed expanded document. All nodes that are not
 uniquely identified by an IRI get assigned a (new) blank node identifier.
 The resulting node map will have an map entry for every graph in the document whose
 value is another object with an entry for every node represented in the document.
 The default graph is stored under the @default entry, all other graphs are
 stored under their graph name.

 7.2.1 Overview
This section is non-normative.

 The algorithm recursively runs over an expanded JSON-LD document to
 collect all entries of a node
 in a single map. The algorithm updates a
 map node map whose keys represent the
 graph names used in the document
 (the default graph is stored under the @default entry)
 and whose associated values are maps
 which index the nodes in the
 graph. If a
 entry's value is a node object,
 it is replaced by a node object consisting of only an
 @id entry. If a node object has no @id
 entry or it is identified by a blank node identifier,
 a new blank node identifier is generated. This relabeling
 of blank node identifiers is
 also done for properties and values of
 @type.

 7.2.2 Algorithm

 The algorithm takes as input an expanded JSON-LD document element and a reference to
 a map node map. Furthermore it has the optional parameters
 active graph (which defaults to @default), an active subject,
 active property, and a reference to a map list. If
 not passed, active subject, active property, and list are
 set to null.

 	If element is an array, process each item in element
 as follows and then return:

 	Run this algorithm recursively by passing item for element,
 node map, active graph, active subject,
 active property, and list.

 	Otherwise element is a map. Reference the
 map which is the value of the active graph
 entry of node map using the variable graph. If the
 active subject is null, set node to null
 otherwise reference the active subject entry of graph using the
 variable subject node.

 	For each item in the @type entry of element,
 if any, or for the value of @type, if the value of @type exists and is not an array:

 	If item is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing item for identifier.

 	If element has an @value entry, perform the following steps:

 	If list is null:

 	If subject node does not have an active property entry,
 create one and initialize its value to an array
 containing element.

 	Otherwise, compare element against every item in the
 array associated with the active property
 entry of subject node. If there is no item equivalent to element,
 append element to the array. Two
 maps are considered
 equal if they have equivalent map entries.

 	Otherwise, append element to the @list entry of list.

 	Otherwise, if element has an @list entry, perform
 the following steps:

 	Initialize a new map result consisting of a single entry
 @list whose value is initialized to an empty array.

 	Recursively call this algorithm passing the value of element's
 @list entry for element, node map, active graph,
 active subject, active property, and
 result for list.

 	If list is null,
 append result to the value of the active property entry
 of subject node.

 	Otherwise, append result to the @list entry of list.

 	Otherwise element is a node object, perform
 the following steps:

 	If element has an @id entry, set id
 to its value and remove the entry from element. If id
 is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing id for identifier.

 	Otherwise, set id to the result of the
 Generate Blank Node Identifier algorithm
 passing null for identifier.

 	If graph does not contain an entry id, create one and initialize
 its value to a map consisting of a single entry @id whose
 value is id.

 	Reference the value of the id entry of graph using the
 variable node.

 	If active subject is a map, a reverse property relationship
 is being processed. Perform the following steps:

 	If node does not have a active property entry,
 create one and initialize its value to an array
 containing active subject.

 	Otherwise, compare active subject against every item in the
 array associated with the active property
 entry of node. If there is no item equivalent to active subject,
 append active subject to the array. Two
 maps are considered
 equal if they have equivalent map entries.

 	Otherwise, if active property is not null, perform the following steps:

 	Create a new map reference consisting of a single entry
 @id whose value is id.

 	If list is null:

 	If subject node does not have an active property entry,
 create one and initialize its value to an array
 containing reference.

 	Otherwise, compare reference against every item in the
 array associated with the active property
 entry of subject node. If there is no item equivalent to reference,
 append reference to the array. Two
 maps are considered
 equal if they have equivalent map entries.

 	Otherwise, append reference to the @list entry of list.

 	If element has an @type entry, append
 each item of its associated array to the
 array associated with the @type entry of
 node unless it is already in that array. Finally
 remove the @type entry from element.

 	If element has an @index entry, set the @index
 entry of node to its value. If node already has an
 @index entry with a different value, a
 conflicting indexes
 error has been detected and processing is aborted. Otherwise, continue by
 removing the @index entry from element.

 	If element has an @reverse entry:

 	Create a map referenced node with a single entry @id whose
 value is id.

 	Initialize reverse map to the value of the @reverse entry of
 element.

 	For each key-value pair property-values in reverse map:

 	For each value of values:

 	Recursively invoke this algorithm passing value for
 element, node map, active graph,
 referenced node for active subject, and
 property for active property. Passing a
 map for active subject indicates to the
 algorithm that a reverse property relationship is being processed.

 	Remove the @reverse entry from element.

 	If element has an @graph entry, recursively invoke this
 algorithm passing the value of the @graph entry for element,
 node map, and id for active graph before removing
 the @graph entry from element.

 	If element has an @included entry,
 recursively invoke this algorithm passing the value of the @included entry for element,
 node map, and active graph
 before removing the @included entry from element.

 	Finally, for each key-value pair property-value in element ordered by
 property perform the following steps:

 	If property is a blank node identifier, replace it with a newly
 generated blank node identifier
 passing property for identifier.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 	If node does not have a property entry, create one and initialize
 its value to an empty array.

 	Recursively invoke this algorithm passing value for element,
 node map, active graph, id for active subject,
 and property for active property.

 7.3 Merge Node Maps

 This algorithm creates a new map of subjects to nodes using all graphs
 contained in the graph map created using the Node Map Generation algorithm
 to create merged node objects containing information defined for a given subject
 in each graph contained in the node map.

 	Create result as an empty map

 	For each graph name and node map in graph map
 and for each id and node in node map:

 	Initialize merged node to the value for id in result, initializing it
 with a new map consisting of a single entry @id whose value is id, if it does not exist.

 	For each property and values in node:

 	If property is a keyword other than @type, add property and values to merged node.

 	Otherwise, merge each element from values into the values for property
 in merged node, initializing it to an empty array if necessary.

 	Return result.

 7.4 Generate Blank Node Identifier

 This algorithm is used to generate new
 blank node identifiers or to
 relabel an existing blank node identifier to avoid collision
 by the introduction of new ones.

 7.4.1 Overview
This section is non-normative.

 The simplest case is if there exists already a blank node identifier
 in the identifier map for the passed identifier, in which
 case it is simply returned. Otherwise, a new blank node identifier
 is generated. If the passed identifier is not null,
 an entry is created in the identifier map associating the
 identifier with the blank node identifier.

 7.4.2 Algorithm

 The algorithm takes a single input variable identifier which may
 be null. The algorithm
 maintains an identifier map to relabel existing
 blank node identifiers to new blank node identifiers,
 which is reset when the invoking algorithm is initialized.

 	If identifier is not null and has an entry in the
 identifier map, return the mapped identifier.

 	Otherwise, generate a new unique blank node identifier.

 	If identifier is not null, create a new entry
 for identifier in identifier map and set its value
 to the new blank node identifier.

 	Return the new blank node identifier.

 Note

 One way of generating new blank node identifiers is to maintain a counter
 and increment it when generating a new identifier and appending it to
 a string such as _:b.

8. RDF Serialization/Deserialization Algorithms

 This section describes algorithms to deserialize a JSON-LD document to an
 RDF dataset and vice versa. The algorithms are designed for in-memory
 implementations with random access to map elements.

 8.1 Deserialize JSON-LD to RDF Algorithm

 This algorithm deserializes a JSON-LD document to an RDF dataset.
 Please note that RDF does not allow a blank node to be used
 as a property, while JSON-LD does. Therefore, by default
 triples that would have contained blank nodes as properties are
 discarded when interpreting JSON-LD as RDF.

 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD.

 If the rdfDirection option is not null, then special processing is used to
 convert from an i18n-datatype or compound-literal form.

 Implementations MUST generate only well-formed
 triples and graph names:

 	An IRI is well-formed if it matches the
 ABNF for IRI as
 described in [RFC3987].

 	A blank node identifier is well-formed if it matches the
 EBNF for
 BLANK_NODE_LABEL as described in [Turtle].
 Note
When following the algorithm described here,
 all blank node identifiers will be normalized using the Generate Blank Node Identifier
 algorithm and automatically adhere to this form.

 	A literal is well-formed if it has the
 lexical form of a string, any datatype IRI is
 well-formed, and any language tag is well-formed
 according to section 2.2.9 of
 [BCP47].

 8.1.1 Overview
This section is non-normative.

 The JSON-LD document is expanded and converted to a node map using the
 Node Map Generation algorithm.
 This allows each graph represented within the document to be
 extracted and flattened, making it easier to process each
 node object.
 Each graph from the node map is processed to extract triple,
 to which any (non-default) graph name is applied to create an RDF dataset.
 Each node object in the node map has an @id entry
 which corresponds to the subject,
 the other entries represent predicates.
 Each entry value is either an IRI or blank node identifier
 or can be transformed to anRDF literal
 to generate an triple.
 Lists are transformed into an RDF collection
 using the List to RDF Conversion algorithm.

 8.1.2 Algorithm

 The algorithm takes a map node map, which
 is the result of the Node Map Generation algorithm and
 an RDF dataset dataset into which new graphs and triples are added.
 It also takes two optional input variables produceGeneralizedRdf
 and rdfDirection.
 Unless the produceGeneralizedRdf option
 is set to true, triple
 containing a blank node predicate
 are excluded from output.

 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	For each graph name and graph in node map
 ordered by graph name:

 	If graph name is
 not well-formed, continue
 with the next graph name-graph pair.

 	If graph name is @default,
 initialize triples to the value of the defaultGraph
 attribute of dataset.
 Otherwise, initialize triples as an empty RdfGraph
 and add to dataset using its
 add method along with graph name
 for graphName.

 	For each subject and node in graph ordered
 by subject:

 	If subject is
 not well-formed, continue
 with the next subject-node pair.

 	For each property and values in node
 ordered by property:

 	If property is @type, then for each
 type in values,
 create a new RdfTriple
 composed of subject, rdf:type for predicate,
 and type for object
 and add to triples
 using its add method,
 unless type is not well-formed.

 	Otherwise, if property is a keyword
 continue with the next property-values pair.

 	Otherwise, if property is a blank node identifier and
 the produceGeneralizedRdf option is not true,
 continue with the next property-values pair.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	Otherwise, if property is
 not well-formed,
 continue with the next property-values pair.

 	Otherwise, property is an IRI or
 blank node identifier. For each item
 in values:

 	Initialize list triples as an empty array.
 Note

 item is a value object, list object,
 or a node object.

 	Add a triple
 composed of subject, property, and
 the result of using the
 Object to RDF Conversion algorithm
 passing item
 and list triples
 to triples using its add method,
 unless the result is null,
 indicating a non-well-formed resource
 that has to be ignored.

 	Add all RdfTriple instances from
 list triples to triples using
 its add method.

 8.2 Object to RDF Conversion

 This algorithm takes a node object, list object, or value object
 and transforms it into an resource to be used as the object of an triple.
 If a node object containing a relative IRI reference is passed to
 the algorithm, null is returned which then causes the resulting
 triple to be ignored.
 If the input is a list object, it will also
 return the triples created from that input.

 8.2.1 Overview
This section is non-normative.

 Value objects are transformed to
 RDF literals as described in
 § 8.6 Data Round Tripping
 whereas node objects are transformed
 to IRIs,
 blank node identifiers,
 or null.

 8.2.2 Algorithm

 The algorithm takes as two arguments item which MUST be
 either a value object, list object, or node object
 and list triples, which is an empty array.

 	If item is a node object and the value of
 its @id entry is
 not well-formed, return
 null.

 	If item is a node object, return the
 IRI or blank node identifier associated
 with its @id entry.

 	If item is a list object
 return the result of the
 List Conversion algorithm, passing
 the value associated with the @list entry from
 item and list triples.

 	Otherwise, item is a value object. Initialize
 value to the value associated with the @value
 entry in item.

	Initialize datatype to the value associated with the
 @type entry of item or null if
 item does not have such an entry.

 	If datatype is not null
 and neither a well-formed IRI nor @json,
 return null.

 	If item has an @language
 entry which is not well-formed, return null.

 	If datatype is @json,
 convert value to the canonical lexical form
 using the result of transforming the internal representation of value
 to JSON and set datatype to rdf:JSON.
 Issue
The JSON Canonicalization Scheme (JCS) [RFC8785]
 is an emerging standard for JSON canonicalization.
 This specification will likely be updated to require such a canonical representation.
 Users are cautioned from depending on the
 JSON literal lexical representation as an RDF literal,
 as the specifics of serialization may change in a future revision of this document.

 	If value is true or
 false, set value to the string
 true or false which is the
 canonical lexical form as described in
 § 8.6 Data Round Tripping
 If datatype is null,
 set datatype to xsd:boolean.

 	Otherwise, if value is a number with a non-zero fractional
 part (the result of a modulo‑1 operation)
 or an absolute value greater or equal to 1021,
 or value is a number
 and datatype equals xsd:double, convert value to a
 string in canonical lexical form of
 an xsd:double as defined in [XMLSCHEMA11-2]
 and described in
 § 8.6 Data Round Tripping.
 If datatype is null,
 set datatype to xsd:double.

 	Otherwise, if value is a number,
 convert it to a string in canonical lexical form of
 an xsd:integer as defined in [XMLSCHEMA11-2]
 and described in
 § 8.6 Data Round Tripping.
 If datatype is null,
 set datatype to xsd:integer.
 Note
It follows from the previous step that value
 has no non-zero fractional part.

 	Otherwise, if datatype is null,
 set datatype to xsd:string or rdf:langString,
 depending on if item has an @language entry.

 	If item contains an @direction entry
 and rdfDirection is not null,
 item is a value object which is serialized using special rules.

 	
 Initialize language to the value of @language in item
 normalized to lower case,
 or the empty string ("") if there is no such entry.
 Note
Generally, language tags are not normalized,
 but when creating an i18n-datatype or compound-literal
 values are normalized to lower case for improved interoperability.

 	If rdfDirection is i18n-datatype,
 set datatype to the result of appending language
 and the value of @direction in item separated by an underscore ("_")
 to https://www.w3.org/ns/i18n#.
 Initialize literal as an RDF literal using
 value and datatype.
 Note
Processors MAY normalize language tags to lower case.

 Note
As @direction may be used without @language,
 it is possible, and legitimate, to create a datatype IRI
 such as http://w3.org/ns/i18n#_ltr, which does not encode a language tag.

 	Otherwise, if rdfDirection is compound-literal:

 	Initialize literal as a new blank node.

 	Create a new triple using literal as the subject,
 rdf:value as the predicate, and the value of @value in item
 as the object, and add it to list triples.

 	If the item has an entry for @language,
 create a new triple using literal as the subject,
 rdf:language as the predicate, and language
 as the object, and add it to list triples.

 	Create a new triple using literal as the subject,
 rdf:direction as the predicate, and the value of @direction in item
 as the object, and add it to list triples.

 	Otherwise, initialize literal as an RDF literal using
 value and datatype. If item has an
 @language entry, add the value associated with the
 @language entry as the language tag of literal.

 	Return literal.

 8.3 List to RDF Conversion

 List Conversion is the process of taking a list object
 and transforming it into an
 RDF collection
 as defined in RDF Semantics [RDF11-MT].

 8.3.1 Overview
This section is non-normative.

 For each element of the list a new blank node identifier
 is allocated which is used to generate rdf:first and
 rdf:rest. The
 algorithm returns the list head, which is either the first allocated
 blank node identifier or rdf:nil if the
 list is empty. If a list element represents an IRI,
 the corresponding rdf:first triple is omitted.

 8.3.2 Algorithm

 The algorithm takes two inputs: an array list
 and an empty array list triples used for returning
 the generated triples.

 	If list is empty, return rdf:nil.

 	Otherwise, create an array bnodes composed of a
 newly generated blank node identifier
 for each entry in list.

 	For each pair of subject from bnodes and item from list:

 	Initialize embedded triples to a new empty array.

 	Initialize object to the result of using the
 Object to RDF Conversion algorithm
 passing item
 and embedded triples for list triples.

 	Unless object is null, append a triple
 composed of subject, rdf:first, and object
 to list triples.

 	Initialize rest as the next entry in bnodes, or if that
 does not exist, rdf:nil. Append a
 triple composed of subject,
 rdf:rest, and rest to list triples.

 	Append all values from embedded triples to list triples

 	Return the first blank node from bnodes or
 rdf:nil if bnodes is empty.

 8.4 Serialize RDF as JSON-LD Algorithm

 This algorithm serializes an RDF dataset consisting of a
 default graph and zero or more
 named graphs into a JSON-LD document.

 In the RDF abstract syntax, RDF literals have a
 lexical form, as defined
 in [RDF11-CONCEPTS]. The form of these literals is used when creating JSON-LD values based on these literals.

 8.4.1 Overview
This section is non-normative.

 Iterate through each graph in the dataset, converting each
 RDF collection into a list
 and generating a JSON-LD document in expanded form for all
 RDF literals, IRIs
 and blank node identifiers.
 If the useNativeTypes flag is set to true,
 RDF literals with a
 datatype IRI
 that equals xsd:integer or xsd:double are converted
 to a JSON numbers and RDF literals
 with a datatype IRI
 that equals xsd:boolean are converted to true or
 false based on their
 lexical form
 as described in
 § 8.6 Data Round Tripping.
 Unless the useRdfType flag is set to true, rdf:type
 predicates will be serialized as @type as long as the associated object is
 either an IRI or blank node identifier.

 If the rdfDirection option is not null, then special processing is used to
 convert from an i18n-datatype or compound-literal form.

 8.4.2 Algorithm

 The algorithm takes one required and four optional inputs:
 an RDF dataset dataset
 and the four optional arguments are
 the ordered flag, defaulting to false, used to order
 map entry keys lexicographically, where noted,
 rdfDirection defaulting to null,
 the useNativeTypes flag, defaulting to false,
 and the useRdfType flag, defaulting to false.

 The dataset is iterable to iterate over graphs and graph names
 contained within the RdfDataset. Each graph is also iterable
 for iterating over triples contained within the RdfGraph.

 	Initialize default graph to an empty map.

 	Initialize graph map to a map consisting
 of a single entry @default whose value references
 default graph.

 	Initialize referenced once to an empty map.

 	Initialize compound literal subjects to an empty map.

 	For each graph in dataset:

 	If graph is the default graph,
 initialize name to @default, otherwise to the
 graph name associated with graph.

 	If graph map has no name entry, create one and set
 its value to an empty map.

 	If compound literal subjects has no name entry, create one and set
 its value to an empty map.

 	If graph is not the default graph and
 default graph does not have a name entry,
 create such an entry and initialize its value to a new
 map with a single entry @id
 whose value is name.

 	Reference the value of the name entry in graph map
 using the variable node map.

 	Reference the value of the name entry in compound literal subjects
 using the variable compound map.

 	For each triple in graph
 consisting of subject, predicate, and object:

 	If node map does not have a subject entry,
 create one and initialize its value to a new map
 consisting of a single entry @id whose value is
 set to subject.

 	Reference the value of the subject entry in node map
 using the variable node.

 	If the rdfDirection option
 is compound-literal and predicate is rdf:direction,
 add an entry in compound map for subject with the value true.

 	If object is an IRI or blank node identifier,
 and node map does not have an object entry,
 create one and initialize its value to a new map
 consisting of a single entry @id whose value is
 set to object.

 	If predicate equals rdf:type, the
 useRdfType flag is not true, and object
 is an IRI or blank node identifier,
 append object to the value of the @type
 entry of node; unless such an item already exists.
 If no such entry exists, create one
 and initialize it to an array whose only item is
 object. Finally, continue to the next
 triple.

 	Initialize value to the result of using the
 RDF to Object Conversion algorithm,
 passing object,
 rdfDirection,
 and useNativeTypes.

 	If node does not have a predicate entry, create one
 and initialize its value to an empty array.

 	If there is no item equivalent to value in the array
 associated with the predicate entry of node, append a
 reference to value to the array. Two maps
 are considered equal if they have equivalent map entries.

 	If object is rdf:nil, it represents
 the termination of an RDF collection:

 	Reference the usages entry of the object
 entry of node map using the variable usages.

 	Append a new map consisting of three
 entries, node, property, and value
 to the usages array. The node entry
 is set to a reference to node, property to predicate,
 and value to a reference to value.

 	Otherwise, if referenced once has an entry for object,
 set the object entry of referenced once to false.

 	Otherwise, if object is a blank node identifier,
 it might represent a list node:

 	Set the object entry of referenced once to a new map consisting of three
 entries, node, property, and value
 to the usages array. The node entry
 is set to a reference to node, property to predicate,
 and value to a reference to value.

 	For each name and graph object in graph map:

 	If compound literal subjects
 has an entry for name, then for each cl
 which is a key in that entry:

 	Initialize cl entry to the value of cl
 in referenced once,
 continuing to the next cl if cl entry is not a map.

 	Initialize node to the value of node in cl entry.

 	Initialize property to value of property in cl entry.

 	Initialize value to value of value in cl entry.

 	Initialize cl node to the value of cl
 in graph object, and remove that entry from graph object,
 continuing to the next cl if cl node is not a map.

 	For each cl reference in the value of property in node
 where the value of @id in cl reference is cl:

 	Delete the @id entry in cl reference.

 	Add an entry to cl reference for @value with the value taken
 from the rdf:value entry in cl node.

 	Add an entry to cl reference for @language with the value taken
 from the rdf:language entry in cl node, if any.
 If that value is not well-formed according to
 section 2.2.9 of [BCP47],
 an invalid language-tagged string
 error has been detected and processing is aborted.

 	Add an entry to cl reference for @direction with the value taken
 from the rdf:direction entry in cl node, if any.
 If that value is not "ltr" or "rtl", an
 invalid base direction
 error has been detected and processing is aborted.

 	If graph object has no rdf:nil entry, continue
 with the next name-graph object pair as the graph does
 not contain any lists that need to be converted.

 	Initialize nil to the value of the rdf:nil entry
 of graph object.

 	For each item usage in the usages entry of
 nil, perform the following steps:

 	Initialize node to the value of the value of the
 node entry of usage, property to
 the value of the property entry of usage,
 and head to the value of the value entry
 of usage.

 	Initialize two empty arrays list
 and list nodes.

 	While property equals rdf:rest,
 the value of the @id entry
 of node is a blank node identifier,
 the value of the entry of referenced once associated with the @id
 entry of node is a map,
 node has rdf:first and rdf:rest entries,
 both of which have as value an array consisting of a single element,
 and node has no other entries apart from an optional @type
 entry whose value is an array with a single item equal to
 rdf:List,
 node represents a well-formed list node.
 Perform the following steps to traverse the list backwards towards its head:

 	Append the only item of rdf:first entry of
 node to the list array.

 	Append the value of the @id entry of
 node to the list nodes array.

 	Initialize node usage to the value of the entry of referenced once associated with the @id
 entry of node.

 	Set node to the value of the node entry
 of node usage, property to the value of the
 property entry of node usage, and
 head to the value of the value entry
 of node usage.

 	If the @id entry of node is an
 IRI instead of a blank node identifier,
 exit the while loop.

 	Remove the @id entry from head.

 	Reverse the order of the list array.

 	Add an @list entry to head and initialize
 its value to the list array.

 	For each item node id in list nodes, remove the
 node id entry from graph object.

 	Initialize an empty array result.

 	For each subject and node in default graph
 ordered lexicographically by subject
 if ordered is true:

 	If graph map has a subject entry:

 	Add an @graph entry to node and initialize
 its value to an empty array.

 	For each key-value pair s-n in the subject
 entry of graph map ordered lexicographically by s
 if ordered is true,
 append n to the @graph entry of node after
 removing its usages entry, unless the only
 remaining entry of n is @id.

 	Append node to result after removing its
 usages entry, unless the only remaining entry of
 node is @id.

 	Return result.

 8.5 RDF to Object Conversion

 This algorithm transforms an RDF literal to a JSON-LD value object
 and a RDF blank node or IRI to an JSON-LD node object.

 8.5.1 Overview
This section is non-normative.

 RDF literals are transformed to
 value objects whereas IRIs and
 blank node identifiers are
 transformed to node objects.

 Literals with datatype rdf:JSON
 are transformed into a value object using the internal representation
 based on the lexical-to-value mapping defined in
 JSON datatype in [JSON-LD11],
 and @type of @json.

 With the rdfDirection option set to i18n-datatype,
 literals with datatype starting with https://www.w3.org/ns/i18n#
 are transformed into a value object by decoding
 the language tag and base direction from the datatype.

 With the rdfDirection option set to compound-literal,
 blank node objects using rdf:direction are
 are transformed into a value object by decoding
 the rdf:value, rdf:language, and rdf:direction properties.

 If the useNativeTypes flag is set to true,
 RDF literals with a
 datatype IRI
 that equals xsd:integer or xsd:double are converted
 to a JSON numbers and RDF literals
 with a datatype IRI
 that equals xsd:boolean are converted to true or
 false based on their
 lexical form
 as described in
 § 8.6 Data Round Tripping.

 8.5.2 Algorithm

 This algorithm takes three required inputs:
 a value to be converted to a map,
 rdfDirection,
 and a flag useNativeTypes.

 	If value is an IRI or a
 blank node identifier, return a new map
 consisting of a single entry @id whose value is set to
 value.

 	Otherwise value is an
 RDF literal:

 	Initialize a new empty map result.

 	Initialize converted value to value.

 	Initialize type to null

 	If useNativeTypes is true

 	If the
 datatype IRI
 of value equals xsd:string, set
 converted value to the
 lexical form
 of value.

 	Otherwise, if the
 datatype IRI
 of value equals xsd:boolean, set
 converted value to true if the
 lexical form
 of value matches true, or false
 if it matches false. If it matches neither,
 set type to xsd:boolean.

 	Otherwise, if the
 datatype IRI
 of value equals xsd:integer or
 xsd:double and its
 lexical form
 is a valid xsd:integer or xsd:double
 according [XMLSCHEMA11-2], set converted value
 to the result of converting the
 lexical form
 to a JSON number.

 	Otherwise, if processing mode is not json-ld-1.0,
 and value is a JSON literal,
 set converted value to the result of
 turning the lexical value of value
 into the JSON-LD internal representation, and set type to @json.
 If the lexical value of value is not valid JSON according to
 the JSON Grammar [RFC8259],
 an invalid JSON literal
 error has been detected and processing is aborted.

 	Otherwise, if the datatype IRI of value starts with https://www.w3.org/ns/i18n#,
 and rdfDirection is i18n-datatype:

 	Set converted value to the lexical form of value.

 	If the string prefix of the fragment identifier
 of the datatype IRI up until the underscore ("_") is not empty,
 add an entry @language to result and set its value to that prefix.
 Note
As @direction may be used without @language,
 it is possible, and legitimate, to create a datatype IRI
 such as http://w3.org/ns/i18n#_ltr, which does not encode a language tag.

 	Add an entry @direction to result and set its value to the substring of the
 fragment identifier following
 the underscore ("_").

 	Otherwise, if value is a
 language-tagged string
 add an entry @language to result and set its value to the
 language tag of value.

 	Otherwise, set type to the
 datatype IRI
 of value, unless it equals xsd:string which is ignored.

 	Add an entry @value to result whose value
 is set to converted value.

 	If type is not null, add an entry @type
 to result whose value is set to type.

 	Return result.

 8.6 Data Round Tripping

 When deserializing JSON-LD to RDF
 JSON-native numbers are automatically
 type-coerced to xsd:integer or xsd:double
 depending on whether the number has a non-zero fractional part
 or not (the result of a modulo‑1 operation), the boolean values
 true and false are coerced to xsd:boolean,
 and strings are coerced to xsd:string.
 The JSON, numeric, or boolean values themselves are converted to
 canonical lexical form, i.e., a deterministic string
 representation as defined in [XMLSCHEMA11-2].

 The canonical lexical form of an integer, i.e., a
 number with no non-zero fractional part
 and an absolute value less than 1021,
 or a number coerced to xsd:integer,
 is a finite-length sequence of decimal
 digits (0-9) with an optional leading minus sign; leading
 zeros are prohibited. In JavaScript, implementers can use the following
 snippet of code to convert an integer to
 canonical lexical form:

 Example 20: Sample integer serialization implementation in JavaScript

 (value).toFixed(0).toString()

 The canonical lexical form of a double, i.e., a
 number
 with a non-zero fractional part or an absolute value greater or equal to 1021,
 or a number
 coerced to xsd:double, consists of a mantissa followed by the
 character E, followed by an exponent. The mantissa is a
 decimal number and the exponent is an integer. Leading zeros and a
 preceding plus sign (+) are prohibited in the exponent.
 If the exponent is zero, it is indicated by E0. For the
 mantissa, the preceding optional plus sign is prohibited and the
 decimal point is required. Leading and trailing zeros are prohibited
 subject to the following: number representations must be normalized
 such that there is a single digit which is non-zero to the left of
 the decimal point and at least a single digit to the right of the
 decimal point unless the value being represented is zero. The
 canonical representation for zero is 0.0E0.
 xsd:double's value space is defined by the IEEE
 double-precision 64-bit floating point type [IEEE-754-2008] whereas
 the value space of JSON numbers is not
 specified; when deserializing JSON-LD to RDF the mantissa is rounded to
 15 digits after the decimal point. In JavaScript, implementers
 can use the following snippet of code to convert a double to
 canonical lexical form:

 Example 21: Sample floating point number serialization implementation in JavaScript

 (value).toExponential(15).replace(/(\d)0*e\+?/,'$1E')

 The canonical lexical form of the boolean
 values true and false are the strings
 true and false.

 The canonical lexical form of a JSON literal
 is the result of serializing the internal representation
 into the JSON format [RFC8259] in compliance with the constraints of the value space description within
 The rdf:JSON Datatype of [JSON-LD11].

 Example 22: Canonicalized JSON literal

 {
 "@context": {
 "@version": 1.1,
 "e": {"@id": "http://example.org/vocab#json", "@type": "@json"}
 },
 "e": [
 56.0,
 {
 "d": true,
 "10": null,
 "1": []
 }
]
}

 The example shows the value of "e" as a native JSON array including
 unnecessary whitespace, a number and an object. The result
 eliminates the whitespace, uses a canonical number representation,
 and reorders the map entries lexicographically:

 @prefix ex: <http://example.org/vocab#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
[ex:json """[56,{"1":[],"10":null,"d":true}]"""^^rdf:JSON] .

 When JSON-native numbers are deserialized
 to RDF, lossless data round-tripping cannot be guaranteed, as rounding
 errors might occur. When
 serializing RDF as JSON-LD,
 similar rounding errors might occur. Furthermore, the datatype or the lexical
 representation might be lost. An xsd:double with a value
 of 2.0 will, e.g., result in an xsd:integer
 with a value of 2 in canonical lexical form
 when converted from RDF to JSON-LD and back to RDF. It is important
 to highlight that in practice it might be impossible to losslessly
 convert an xsd:integer to a number because
 its value space is not limited. While the JSON specification [RFC8259]
 does not limit the value space of numbers
 either, concrete implementations typically do have a limited value
 space.

 To ensure lossless round-tripping the
 Serialize RDF as JSON-LD Algorithm
 specifies a useNativeTypes flag which controls whether
 RDF literals
 with a datatype IRI
 equal to xsd:integer, xsd:double, or
 xsd:boolean are converted to their JSON-native
 counterparts. If the useNativeTypes flag is set to
 false, all literals remain in their original string
 representation.

 Some JSON serializers, such as PHP's native implementation in some versions,
 backslash-escape the forward slash character. For example, the value
 http://example.com/ would be serialized as http:\/\/example.com\/.
 This is problematic as other JSON parsers might not understand those escaping characters.
 There is no need to backslash-escape forward slashes in JSON-LD. To aid
 interoperability between JSON-LD processors, forward slashes MUST NOT be
 backslash-escaped.

9. The Application Programming Interface

 This API provides a clean mechanism that enables developers to convert
 JSON-LD data into a variety of output formats that are often easier to
 work with.

 The JSON-LD API uses Promises to represent
 the result of the various deferred operations.
 Promises are defined in [ECMASCRIPT].
 General use within specifications can be found in [promises-guide].
 Implementations MAY chose to implement in an appropriate way for their native environments
 as long as they generally use the same methods, arguments, and options
 and return the same results.

 Note
Interfaces are marked [Exposed=JsonLd],
 which creates a global interface.
 The use of WebIDL in JSON-LD, while appropriate for use within browsers,
 is not limited to such use.

 9.1 The JsonLdProcessor Interface

 The JsonLdProcessor interface is the high-level programming structure
 that developers use to access the JSON-LD transformation methods.

 It is important to highlight that implementations do not modify the input parameters.
 If an error is detected, the Promise is
 rejected with a JsonLdError having an appropriate code
 and processing is stopped.

 If the documentLoader
 option is specified, it is used to dereference remote documents and contexts.
 The documentUrl
 in the returned RemoteDocument
 is used as base IRI and the
 contextUrl
 is used instead of looking at the HTTP Link Header directly. For the sake of simplicity, none of the algorithms
 in this document mention this directly.

 WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> compact(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> expand(
 JsonLdInput input,
 optional JsonLdOptions options = {});
 static Promise<JsonLdRecord> flatten(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> fromRdf(
 RdfDataset input,
 optional JsonLdOptions options = {});
 static Promise<RdfDataset> toRdf(
 JsonLdInput input,
 optional JsonLdOptions options = {});
};

 	compact()

 	
 Compacts the given input using the
 context according to the steps in the Compaction algorithm:

 The final output is a map
 derived from compacted output.
 If compacted output is an array, it is
 included with an entry of (a possibly aliased) @graph
 with the value of compacted output,
 otherwise compacted output is used as the map result.
 If context not null,
 an @context entry is added to the map result.

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded input to the result of
 using the expand() method
 using either remote document
 or input
 if there is no remote document
 for input,
 and options,
 with ordered set to false,
 and extractAllScripts defaulting to false.

 	Set context base to the documentUrl
 from remote document, if available, otherwise to the base option
 from options.

 	If context is a map
 having an @context entry,
 set context to that entry's value,
 otherwise to context.

 	Initialize active context
 to the result of the Context Processing algorithm
 passing a new empty context as active context
 context as local context,
 and context base as base URL.

 	Set base IRI in active context to the base option from options, if set;
 otherwise, if the compactToRelative option is true,
 to the IRI of the currently being processed document, if available;
 otherwise to null.

 	Set compacted output to the result of using the Compaction algorithm,
 using active context,
 null for active property,
 expanded input as element,
 and the compactArrays
 and ordered
 flags from options.

 	If compacted output is an empty array,
 replace it with a new map.

 	Otherwise, if compacted output is an array,
 replace it with a new map with a single entry
 whose key is the result of
 IRI compacting @graph
 and value is compacted output.

 	If context was not null,
 add an @context entry to compacted output and set its value
 to the provided context.

 	Resolve the promise with compacted output
 transforming compacted output from the
 internal representation to a JSON serialization.

 	input

 	The map,
 array of maps to perform the compaction upon,
 or an IRI referencing the JSON-LD document to compact.

 	context

 	The context to use when compacting the input;
 it can be specified by using a map,
 an IRI,
 or an array consisting of maps and IRIs.

 	options

 	A set of options to configure the algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	expand()

 	
 Expands the given input
 according to the steps in the Expansion algorithm:

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 the extractAllScripts option from options
 for extractAllScripts.

 	If document
 from remote document is a string, transform into the internal representation.
 If document cannot be transformed to the internal representation,
 reject promise passing a loading document failed error.

 	Initialize a new empty active context.
 The base IRI and original base URL of the active context is set to the documentUrl
 from remote document, if available;
 otherwise to the base option from options.
 If set, the base option from options overrides the base IRI.

 	If the expandContext option in options is set,
 update the active context using the Context Processing algorithm,
 passing the expandContext as local context
 and the original base URL from active context as base URL.
 If expandContext is a map having an @context entry,
 pass that entry's value instead for local context.

 	If remote document has a contextUrl,
 update the active context using the Context Processing algorithm,
 passing the contextUrl as local context,
 and contextUrl as base URL.

 	Set expanded output to the result of using the Expansion algorithm,
 passing the active context,
 document from remote document or input
 if there is no remote document as element,
 null as active property,
 documentUrl as base URL, if available,
 otherwise to the base option
 from options,
 and the frameExpansion
 and and ordered
 flags from options.
 Note
If there is no remote document,
 then input is
 a JsonLdRecord or a sequence of
 JsonLdRecords, which are implicitly already in the
 internal representation.

 	If expanded output is a
 map that contains only an @graph entry,
 set expanded output that value.

 	If expanded output is null,
 set expanded output to an empty array.

 	If expanded output is not an array,
 set expanded output to an array containing only expanded output.

 	Resolve the promise with expanded output
 transforming expanded output from the
 internal representation to a JSON serialization.

 	input

 	The map,
 or array of maps to perform the expansion upon,
 or an IRI referencing the JSON-LD document to expand.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	flatten()

 	
 Flattens the given input
 and optionally compacts it using the provided context
 according to the steps in the Flattening algorithm:

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	If the provided input
 is a RemoteDocument,
 initialize remote document to input.

 	Otherwise, if the provided input
 is a string representing the IRI of a remote document, await and dereference it as remote document
 using LoadDocumentCallback, passing input
 for url,
 and the extractAllScripts option from options
 for extractAllScripts.

 	Set expanded input to the result of
 using the expand() method
 using either remote document
 or input
 if there is no remote document
 for input,
 and options
 with ordered set to false.

 	Initialize an empty identifier map.

 	Set flattened output to the result of using the Flattening algorithm,
 passing expanded input as element,
 and the ordered flag
 from options.

 	If context is not null,
 set flattened output to the result of
 using the compact() method
 using flattened output for input,
 context,
 and options.
 Set the base IRI in active context to the base option
 from options, if set;
 otherwise, if the compactToRelative option is true,
 to the IRI of the currently being processed document, if available;
 otherwise to null.

 	Resolve the promise with flattened output
 transforming flattened output from the
 internal representation to a JSON serialization,
 if necessary.

 	input

 	The map,
 or array of maps,
 or an IRI referencing the JSON-LD document to flatten.

 	context

 	The context to use when compacting the flattened expanded input;
 it can be specified by using a map,
 an IRI, or an array consisting of maps
 and IRIs.
 If null, the result will not be compacted but kept in expanded form.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	fromRdf()

 	
 Transforms the given input
 into a JSON-LD document in expanded form
 according to the steps in the Serialize RDF as JSON-LD Algorithm:

 Note
This interface does not define a means of creating an RdfDataset
 from an arbitrary input, other than the toRdf() method.

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	Set expanded result to the result of invoking the
 Serialize RDF as JSON-LD Algorithm method
 using dataset
 and options.

 	Resolve the promise with expanded result
 transforming expanded result from the
 internal representation to a JSON serialization.

 	input

 	The map,
 or array of maps,
 or an IRI referencing the JSON-LD document to flatten.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 	toRdf()

 	
 Transforms the given input into an RdfDataset
 according to the steps in the Deserialize JSON-LD to RDF Algorithm:

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	Set expanded input to the result of using the
 expand() method
 using input
 and options
 with ordered set to false.

 	Create a new RdfDataset dataset.

 	Create a new map node map.

 	Invoke the Node Map Generation algorithm,
 passing expanded input as element
 and node map.

 	Invoke the Deserialize JSON-LD to RDF Algorithm
 passing node map, dataset,
 and the produceGeneralizedRdf flag from options.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	Resolve the promise with dataset.

 	input

 	The map,
 or array of maps,
 or an IRI referencing the JSON-LD document to flatten.

 	options

 	A set of options to configure the used algorithms.
 This allows, e.g., to set the input document's base IRI.
 The JsonLdOptions type defines default option values.

 WebIDLtypedef record<USVString, any> JsonLdRecord;

 The JsonLdRecord is the definition of a map
 used to contain arbitrary map entries
 which are the result of parsing a JSON Object.

WebIDLtypedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

 The JsonLdInput interface is used to refer to an input value
 that that may be a JsonLdRecord,
 a sequence of JsonLdRecords,
 a string representing an IRI,
 which can be dereferenced to retrieve a valid JSON document,
 or an already dereferenced RemoteDocument.

 When the value is a JsonLdRecord or sequence of JsonLdRecords,
 the values are taken as their equivalent internal representation values,
 where a JsonLdRecord is equivalent to a map,
 and a sequence of JsonLdRecords is equivalent to an array
 of maps. The map entries are converted to their equivalents
 in [INFRA].

 WebIDLtypedef (JsonLdRecord or sequence<(JsonLdRecord or USVString)> or USVString) JsonLdContext;

 The JsonLdContext interface is used to refer to a value
 that may be a JsonLdRecord,
 a sequence of JsonLdRecords,
 or a string representing an IRI,
 which can be dereferenced to retrieve a valid JSON document.

 When the value is a JsonLdRecord or sequence of JsonLdRecords,
 the values are taken as their equivalent internal representation values,
 where a JsonLdRecord is equivalent to a map,
 and a sequence of JsonLdRecords is equivalent to an array
 of maps. The map entries are converted to their equivalents
 in [INFRA].

 9.2 RDF Dataset Interfaces

 The RdfDataset interface describes operations on an RDF dataset
 used by the fromRdf()
 and toRdf() methods
 in the JsonLdProcessor interface.
 The interface may be used for constructing a new RDF dataset,
 which has a default graph accessible via the defaultGraph attribute.

 WebIDL[Exposed=JsonLd]
interface RdfDataset {
 constructor();
 readonly attribute RdfGraph defaultGraph;
 void add(USVString graphName, RdfGraph graph);
 iterable<USVString?, RdfGraph>;
};

 	add()

 	
 Adds an RdfGraph and its associated graph name to the RdfDataset.
 Used by the Deserialize JSON-LD to RDF Algorithm.

 	graphName

 	The graph name associated with graph.
 graphName MUST be a
 well-formed IRI or blank node identifier.

 	graph

 	The RdfGraph to add to the RdfDataset.

 	defaultGraph

 	Provides access to the default graph associated with the RDF dataset.

 	iterable

 	The value pairs to iterate over
 are the list of graph name-graph pairs,
 with the graph name being null
 (for the default graph),
 an IRI,
 or blank node identifier
 and graph an RdfGraph instance.

 The RdfGraph interface describes operations on an RDF graph used by the fromRdf()
 and toRdf() methods
 in the JsonLdProcessor interface.
 The interface may be used for constructing a new RDF graph,
 which is composed of zero or more RdfTriple instances.

 WebIDL[Exposed=JsonLd]
interface RdfGraph {
 constructor();
 void add(RdfTriple triple);
 iterable<RdfTriple>;
};

 	add()

 	
 Adds an RdfTriple to the RdfGraph.
 Used by the Deserialize JSON-LD to RDF Algorithm.

 	triple

 	The RdfTriple to add to the RdfGraph.

 	iterable

 	A value iterator
 over the RdfTriple instances associated with the graph.
 Note that a given RdfTriple instance may appear in more than one graph
 within a particular RdfDataset instance.

 The RdfTriple interface describes an triple.

 WebIDL[Exposed=JsonLd]
interface RdfTriple {
 constructor();
 readonly attribute USVString subject;
 readonly attribute USVString predicate;
 readonly attribute (USVString or RdfLiteral) _object;
};

 	subject

 	An absolute IRI or blank node identifier
 denoting the subject of the triple.

 	predicate

 	An absolute IRI denoting the predicate of the triple.
 If used to represent a Generalized RDF Dataset,
 it may also be a blank node identifier.
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD, as is the support for generalized RDF Datasets.

 	object

 	An absolute IRI, blank node identifier, or literal
 denoting the object of the triple.

 The RdfLiteral interface describes an RDF Literal.

 WebIDL[Exposed=JsonLd]
interface RdfLiteral {
 constructor();
 readonly attribute USVString value;
 readonly attribute USVString datatype;
 readonly attribute USVString? language;
};

 	value

 	The lexical value of the literal.

 	datatype

 	An absolute IRI denoting the datatype IRI of the literal.
 If the value is rdf:langString,
 language MUST be specified.

 	language

 	An optional language tag as defined by [BCP47].
 If this value is specified, datatype MUST be rdf:langString.

 9.3 The JsonLdOptions Type

 The JsonLdOptions type is used to pass various options to the
 JsonLdProcessor methods.

 WebIDLdictionary JsonLdOptions {
 USVString? base = null;
 boolean compactArrays = true;
 boolean compactToRelative = true;
 LoadDocumentCallback? documentLoader = null;
 (JsonLdRecord? or USVString) expandContext = null;
 boolean extractAllScripts = false;
 boolean frameExpansion = false;
 boolean ordered = false;
 USVString processingMode = "json-ld-1.1";
 boolean produceGeneralizedRdf = true;
 USVString? rdfDirection = null;
 boolean useNativeTypes = false;
 boolean useRdfType = false;
};

 	base

 	The base IRI to use when expanding or compacting the document.
 If set, this overrides the input document's IRI.

 	compactArrays

 	If set to true, the JSON-LD processor replaces arrays
 with just one element with that element during compaction.
 If set to false,
 all arrays will remain arrays even if they have just one element.

 	compactToRelative

 	Determines if IRIs are compacted
 relative to the base option
 or document location when compacting.

 	documentLoader

 	The callback of the loader to be used to retrieve remote documents and contexts,
 implementing the LoadDocumentCallback.
 If specified, it is used to retrieve remote documents and contexts;
 otherwise, if not specified, the processor's built-in loader is used.

 	expandContext

 	A context that is used to initialize the active context when expanding a document.

 	extractAllScripts

 	If set to true,
 when extracting JSON-LD script elements from HTML,
 unless a specific fragment identifier is targeted,
 extracts all encountered JSON-LD script elements using an array form, if necessary.

 	frameExpansion

 	Enables special frame processing rules for the Expansion Algorithm.

 	Enables special rules for the Serialize RDF as JSON-LD Algorithm
 to use JSON-LD native types as values, where possible.

 	ordered

 	If set to true,
 certain algorithm processing steps where indicated are ordered lexicographically.
 If false, order is not considered in processing.

 	processingMode

 	Sets the processing mode.
 If set to json-ld-1.0 or json-ld-1.1,
 the implementation must produce exactly the same results as the
 algorithms defined in this specification.
 If set to another value,
 the JSON-LD processor is allowed to extend or modify the algorithms defined in this specification
 to enable application-specific optimizations.
 The definition of such optimizations is beyond the scope of this specification
 and thus not defined.
 Consequently, different implementations may implement different optimizations.
 Developers must not define modes beginning with json-ld
 as they are reserved for future versions of this specification.

 	produceGeneralizedRdf

 	If set to true, the JSON-LD processor may emit
 blank nodes for triple predicates,
 otherwise they will be omitted.
 Generalized RDF Datasets
 are defined in [RDF11-CONCEPTS].
 Note
The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	rdfDirection

 	Determines how value objects containing a base direction
 are transformed to and from RDF.

 	If set to i18n-datatype, an RDF literal is generated using a datatype IRI
 based on https://www.w3.org/ns/i18n# with both the language tag (if present)
 and base direction encoded.
 When transforming from RDF, this datatype is decoded to create a value object
 containing @language (if present) and @direction.

 	If set to compound-literal, a blank node is emitted instead of a literal,
 where the blank node is the subject of rdf:value, rdf:direction, and rdf:language (if present)
 properties.
 When transforming from RDF, this object is decoded to create a value object
 containing @language (if present) and @direction.

	useNativeTypes

 	Causes the Serialize RDF as JSON-LD Algorithm
 to use native JSON values in value objects avoiding the need for an explicitly @type.

 	useRdfType

 	Enables special rules for the Serialize RDF as JSON-LD Algorithm
 causing rdf:type properties to be kept as IRIs in the output, rather than use @type.

 9.4 Remote Document and Context Retrieval

 Users of an API implementation can utilize a callback to control how
 remote documents and contexts are retrieved.
 This section details the parameters of that callback
 and the data structure used to return the retrieved context.

 9.4.1 LoadDocumentCallback

 The LoadDocumentCallback defines a callback that custom document loaders
 have to implement to be used to retrieve remote documents and contexts.
 The callback returns a Promise resolving to a RemoteDocument.
 On failure, the Promise with a JsonLdError having an appropriate error code.

 WebIDLcallback LoadDocumentCallback = Promise<RemoteDocument> (
 USVString url,
 optional LoadDocumentOptions? options
);

 	url

 	The URL of the remote document or context to load.

 	options

 	A set of options to determine
 the behavior of the callback. See § 9.4.2 LoadDocumentOptions.

 The following algorithm describes the default callback and places
 requirements on implementations of the callback.

 	Create a new Promise promise and return it.
 The following steps are then deferred.

 	Set document to the body retrieved from
 the resource identified by url,
 or by otherwise locating a resource associated with url.
 When requesting remote documents the request MUST prefer Content-Type application/ld+json
 followed by application/json.

 If requestProfile is set,
 it MUST be added as a profile on application/ld+json.

 Processors MAY include other media types using a +json suffix as defined in [RFC6839].

 	Set documentUrl to the location of the retrieved resource
 considering redirections (exclusive of HTTP status 303 "See Other" redirects
 as discussed in [cooluris]).

 	If the retrieved resource's Content-Type is not application/json
 nor any media type with a +json suffix as defined in [RFC6839],
 and the response has an HTTP Link Header [RFC8288] using the alternate link relation
 with type application/ld+json,
 set url to the associated href relative to the previous url
 and restart the algorithm from step 2.

 	If the retrieved resource's Content-Type is application/json
 or any media type with a +json suffix as defined in [RFC6839]
 except application/ld+json,
 and the response has an HTTP Link Header [RFC8288] using the http://www.w3.org/ns/json-ld#context link relation,
 set contextUrl to the associated href.
 If multiple HTTP Link Headers using the http://www.w3.org/ns/json-ld#context link relation are found,
 the promise is rejected with a JsonLdError whose code is set to multiple context link headers
 and processing is terminated.

 Processors MAY transform document to the internal representation.

 Note
The HTTP Link Header is ignored for documents served as application/ld+json,
 text/html, or application/xhtml+xml.

 	Otherwise, the retrieved document's Content-Type is neither
 application/json,
 application/ld+json,
 nor any other media type using a
 +json suffix as defined in [RFC6839].
 Reject the promise passing a loading document failed error.

 	Create a new RemoteDocument remote document using
 url as documentUrl,
 document as document,
 the returned Content-Type (without parameters) as contentType,
 any returned profile parameter, or null as profile,
 and contextUrl, or null as contextUrl.

 	Resolve the promise with remote document.

 Note
A custom LoadDocumentCallback set via the
 documentLoader option might be used
 to maintain a local cache of well-known context documents or to implement
 application-specific URL protocols.

 9.4.2 LoadDocumentOptions

 The LoadDocumentOptions type is used to pass various options
 to the LoadDocumentCallback.

 WebIDLdictionary LoadDocumentOptions {
 boolean extractAllScripts = false;
 USVString profile = null;
 (USVString or sequence<USVString>) requestProfile = null;
};

 	extractAllScripts

 	If set to true,
 when extracting JSON-LD script elements from HTML,
 unless a specific fragment identifier is targeted,
 extracts all encountered JSON-LD script elements using an array form, if necessary.

 	profile

 	When the resulting contentType is text/html
 or application/xhtml+xml,
 this option determines the profile to use for selecting JSON-LD script elements.

 	requestProfile

 	One or more IRIs to use in the request as a profile parameter.
 (See IANA Considerations in [JSON-LD11]).

 9.4.3 RemoteDocument

 The RemoteDocument type is used by a LoadDocumentCallback
 to return information about a remote document or context.

 WebIDL[Exposed=JsonLd]
interface RemoteDocument {
 constructor();
 readonly attribute USVString contentType;
 readonly attribute USVString contextUrl;
 attribute any document;
 readonly attribute USVString documentUrl;
 readonly attribute USVString profile;
};

 	contentType

 	The Content-Type
 of the loaded document, exclusive of any optional parameters.

 	contextUrl

 	If available, the value of the HTTP Link Header [RFC8288]
 using the http://www.w3.org/ns/json-ld#context link relation
 in the response.
 If the response's Content-Type is application/ld+json,
 the HTTP Link Header is ignored.
 If multiple HTTP Link Headers using the http://www.w3.org/ns/json-ld#context link relation are found,
 the Promise of the LoadDocumentCallback is rejected
 with a JsonLdError whose code is set to multiple context link headers.

 	document

 	The retrieved document.
 This can either be the raw payload or the already parsed document.

 	documentUrl

 	The final URL of the loaded document.
 This is important to handle HTTP redirects properly.

 	profile

 	The value of any profile parameter
 retrieved as part of the original contentType.

 9.5 HTML Content Algorithms

 Note
This section describes optional features available
 with a documentLoader supporting HTML script extraction.

 Implementations of a documentLoader MAY support extracting JSON-LD from
 script elements contained within an HTML [HTML] document.
 This section describes the normative behavior of such processors.
 Such a processor supports HTML script extraction.

 9.5.1 Process HTML

 This sections describe an extension to the algorithm specified
 in LoadDocumentCallback to support extracting JSON-LD from HTML.

 Step 2 is updated to add the following: A processor supporting HTML script extraction MUST include text/html at any preference level
 and MAY include application/xhtml+xml at any preference level,
 unless requestProfile is http://www.w3.org/ns/json-ld#context.

 After step 5, add the following processing step:
 Otherwise, if the retrieved resource's Content-Type is either text/html
 or application/xhtml+xml:

 	Set documentUrl to the Document Base URL
 of url, as defined in [HTML],
 using the existing documentUrl as the document's URL.

 	If the url parameter
 contains a fragment identifier,
 set source to the textContent
 of the script element in document
 having an id attribute
 that matches the fragment identifier, after decoding percent encoded sequences.
 If no such element is found,
 or the located element is not a JSON-LD script element,
 the promise is rejected with a JsonLdError whose code is set to loading document failed
 and processing is terminated.

 	Otherwise, if the profile
 option is specified,
 set source to the result of transforming the
 textContent
 of the first script element in document
 having an type attribute
 of application/ld+json along with the value of the
 profile option, if found.

 	If source is still undefined and the extractAllScripts option is not present, or false,
 set source to the textContent
 of the first JSON-LD script element in document.
 If no such element is found,
 or the located element is not a JSON-LD script element,
 the promise is rejected with a JsonLdError whose code is set to loading document failed
 and processing is terminated.

 	If source is defined,
 set document to the result of the
 Extract Script Content algorithm,
 using source, rejecting promise
 with a JsonLdError whose code set from the result, if an error is detected
 and processing is terminated.

 	Otherwise, source is undefined.

 	If the extractAllScripts option is not present, or false,
 the promise is rejected with a JsonLdError whose code is set to loading document failed
 and processing is terminated.

 	Otherwise, the extractAllScripts option is true.
 Set document to a new empty array.
 For each JSON-LD script element in input:

 	Set source to its textContent.

 	Set script content to the result of the Extract Script Content algorithm,
 using source, rejecting promise
 with a JsonLdError whose code set from the result, if an error is detected
 and processing is terminated.

 	If script content is an array, merge it to the end of document.

 	Otherwise, append script content to document.

 9.5.2 Extract Script Content Algorithm

 The algorithm extracts the text content a
 JSON-LD script element into a map or array of maps.
 A JSON-LD script element is a script element
 within an HTML [HTML] document with the type attribute set to
 application/ld+json.

 The algorithm takes a single required input variable: source,
 the textContent of an HTML script element.

 	If source is not a valid JSON document,
 an invalid script element has been detected, and processing is aborted.

 	Return the result of transforming source into the internal representation.

 9.6 Error Handling

 This section describes the datatype definitions
 used within the JSON-LD API for error handling.

 9.6.1 JsonLdError

 The JsonLdError type is used to report processing errors.

 WebIDLdictionary JsonLdError {
 JsonLdErrorCode code;
 USVString? message = null;
};

 	code

 	A string representing the particular error type,
 as described in the various algorithms in this document.

 	message

 	An optional error message containing additional debugging information.
 The specific contents of error messages are outside the scope of this specification.

 9.6.2 JsonLdErrorCode

 The JsonLdErrorCode represents the collection of valid JSON-LD error codes.

 WebIDLenum JsonLdErrorCode {
 "colliding keywords",
 "conflicting indexes",
 "context overflow",
 "cyclic IRI mapping",
 "invalid @id value",
 "invalid @import value",
 "invalid @included value",
 "invalid @index value",
 "invalid @nest value",
 "invalid @prefix value",
 "invalid @propagate value",
 "invalid @protected value",
 "invalid @reverse value",
 "invalid @version value",
 "invalid base direction",
 "invalid base IRI",
 "invalid container mapping",
 "invalid context entry",
 "invalid context nullification",
 "invalid default language",
 "invalid IRI mapping",
 "invalid JSON literal",
 "invalid keyword alias",
 "invalid language map value",
 "invalid language mapping",
 "invalid language-tagged string",
 "invalid language-tagged value",
 "invalid local context",
 "invalid remote context",
 "invalid reverse property map",
 "invalid reverse property value",
 "invalid reverse property",
 "invalid scoped context",
 "invalid script element",
 "invalid set or list object",
 "invalid term definition",
 "invalid type mapping",
 "invalid type value",
 "invalid typed value",
 "invalid value object value",
 "invalid value object",
 "invalid vocab mapping",
 "IRI confused with prefix",
 "keyword redefinition",
 "loading document failed",
 "loading remote context failed",
 "multiple context link headers",
 "processing mode conflict",
 "protected term redefinition"
};

 	colliding keywords

 	Two properties which expand to the same keyword have been detected.
 This might occur if a keyword
 and an alias thereof
 are used at the same time.

 	conflicting indexes

 	Multiple conflicting indexes have been found for the same node.

 	context overflow

 	Maximum number of @context URLs exceeded.

 	cyclic IRI mapping

 	A cycle in IRI mappings has been detected.

 	invalid @id value

 	An @id entry was encountered whose value was not a string.

 	invalid @import value

 	An invalid value for @import has been found.

 	invalid @included value

 	An included block contains an invalid value.

 	invalid @index value

 	An @index entry was encountered whose value was not a string.

 	invalid @nest value

 	An invalid value for @nest has been found.

 	invalid @prefix value

 	An invalid value for @prefix has been found.

 	invalid @propagate value

 	An invalid value for @propagate has been found.

 	invalid @protected value

 	An invalid value for @protected has been found.

 	invalid @reverse value

 	An invalid value for an @reverse entry has been detected,
 i.e., the value was not a map.

 	invalid @version value

 	The @version entry was used in a context
 with an out of range value.

 	invalid base direction

 	The value of @direction is not "ltr", "rtl",
 or null and thus invalid.

 	invalid base IRI

 	An invalid base IRI has been detected, i.e.,
 it is neither an IRI nor null.

 	invalid container mapping

 	An @container entry was encountered
 whose value was not one of the following strings:
 @list,
 @set,
 @language,
 @index,
 @id,
 @graph, or
 @type.

 	invalid context entry

 	An entry in a context is invalid due to processing mode incompatibility.

 	invalid context nullification

 	An attempt was made to nullify a context
 containing protected term definitions.

 	invalid default language

 	The value of the default language is not a string
 or null and thus invalid.

 	invalid IRI mapping

 	A local context contains a term
 that has an invalid or missing IRI mapping.

 	invalid JSON literal

 	An invalid JSON literal was detected.

 	invalid keyword alias

 	An invalid keyword alias definition has been encountered.

 	invalid language map value

 	An invalid value in a language map has been detected.
 It MUST be a string or an array of strings.

 	invalid language mapping

 	An @language entry in a term definition
 was encountered whose value was neither a string
 nor null and thus invalid.

 	invalid language-tagged string

 	A language-tagged string with an invalid language value was detected.

 	invalid language-tagged value

 	A number, true, or false
 with an associated language tag was detected.

 	invalid local context

 	In invalid local context was detected.

 	invalid remote context

 	No valid context document has been found for a referenced remote context.

 	invalid reverse property

 	An invalid reverse property definition has been detected.

 	invalid reverse property map

 	An invalid reverse property map has been detected.
 No keywords apart from @context
 are allowed in reverse property maps.

 	invalid reverse property value

 	An invalid value for a reverse property has been detected.
 The value of an inverse property must be a node object.

 	invalid scoped context

 	The local context
 defined within a term definition
 is invalid.

 	invalid script element

 	A script element in HTML input
 which is the target of a fragment identifier
 does not have an appropriate type attribute.

 	invalid set or list object

 	A set object or list object
 with disallowed entries
 has been detected.

 	invalid term definition

 	An invalid term definition has been detected.

 	invalid type mapping

 	An @type entry in a term definition
 was encountered whose value could not be expanded to an IRI.

 	invalid type value

 	An invalid value for an @type entry has been detected,
 i.e., the value was neither a string nor an array of strings.

 	invalid typed value

 	A typed value with an invalid type was detected.

 	invalid value object

 	A value object with disallowed entries has been detected.

 	invalid value object value

 	An invalid value for the @value entry of a value object
 has been detected,
 i.e., it is neither a scalar nor null.

 	invalid vocab mapping

 	An invalid vocabulary mapping has been detected,
 i.e., it is neither an IRI nor null.

 	IRI confused with prefix

 	When compacting an IRI would result in an IRI
 which could be confused with a compact IRI
 (because its IRI scheme matches a term definition and it has no IRI authority).

 	keyword redefinition

 	A keyword redefinition has been detected.

 	loading document failed

 	The document could not be loaded or parsed as JSON.

 	loading remote context failed

 	There was a problem encountered loading a remote context.

 	multiple context link headers

 	Multiple HTTP Link Headers [RFC8288]
 using the http://www.w3.org/ns/json-ld#context link relation
 have been detected.

 	processing mode conflict

 	An attempt was made to change the processing mode
 which is incompatible with the previous specified version.

 	protected term redefinition

 	An attempt was made to redefine a protected term.

10. Security Considerations

 See, Security Considerations in [JSON-LD11].

11. Privacy Considerations

 See, Privacy Considerations in [JSON-LD11].

12. Internationalization Considerations

 See, Internationalization Considerations in [JSON-LD11].

A. IDL Index
This section is non-normative.

WebIDL/*
 * The JsonLd interface is created to expose the JsonLdProcessor interface.
 */
[Global=JsonLd, Exposed=JsonLd]
interface JsonLd {};

[Exposed=JsonLd]
interface JsonLdProcessor {
 constructor();
 static Promise<JsonLdRecord> compact(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> expand(
 JsonLdInput input,
 optional JsonLdOptions options = {});
 static Promise<JsonLdRecord> flatten(
 JsonLdInput input,
 optional JsonLdContext context = null,
 optional JsonLdOptions options = {});
 static Promise<sequence<JsonLdRecord>> fromRdf(
 RdfDataset input,
 optional JsonLdOptions options = {});
 static Promise<RdfDataset> toRdf(
 JsonLdInput input,
 optional JsonLdOptions options = {});
};

typedef record<USVString, any> JsonLdRecord;

typedef (JsonLdRecord or sequence<JsonLdRecord> or USVString or RemoteDocument) JsonLdInput;

typedef (JsonLdRecord or sequence<(JsonLdRecord or USVString)> or USVString) JsonLdContext;

[Exposed=JsonLd]
interface RdfDataset {
 constructor();
 readonly attribute RdfGraph defaultGraph;
 void add(USVString graphName, RdfGraph graph);
 iterable<USVString?, RdfGraph>;
};

[Exposed=JsonLd]
interface RdfGraph {
 constructor();
 void add(RdfTriple triple);
 iterable<RdfTriple>;
};

[Exposed=JsonLd]
interface RdfTriple {
 constructor();
 readonly attribute USVString subject;
 readonly attribute USVString predicate;
 readonly attribute (USVString or RdfLiteral) _object;
};

[Exposed=JsonLd]
interface RdfLiteral {
 constructor();
 readonly attribute USVString value;
 readonly attribute USVString datatype;
 readonly attribute USVString? language;
};

dictionary JsonLdOptions {
 USVString? base = null;
 boolean compactArrays = true;
 boolean compactToRelative = true;
 LoadDocumentCallback? documentLoader = null;
 (JsonLdRecord? or USVString) expandContext = null;
 boolean extractAllScripts = false;
 boolean frameExpansion = false;
 boolean ordered = false;
 USVString processingMode = "json-ld-1.1";
 boolean produceGeneralizedRdf = true;
 USVString? rdfDirection = null;
 boolean useNativeTypes = false;
 boolean useRdfType = false;
};

callback LoadDocumentCallback = Promise<RemoteDocument> (
 USVString url,
 optional LoadDocumentOptions? options
);

dictionary LoadDocumentOptions {
 boolean extractAllScripts = false;
 USVString profile = null;
 (USVString or sequence<USVString>) requestProfile = null;
};

[Exposed=JsonLd]
interface RemoteDocument {
 constructor();
 readonly attribute USVString contentType;
 readonly attribute USVString contextUrl;
 attribute any document;
 readonly attribute USVString documentUrl;
 readonly attribute USVString profile;
};

dictionary JsonLdError {
 JsonLdErrorCode code;
 USVString? message = null;
};

enum JsonLdErrorCode {
 "colliding keywords",
 "conflicting indexes",
 "context overflow",
 "cyclic IRI mapping",
 "invalid @id value",
 "invalid @import value",
 "invalid @included value",
 "invalid @index value",
 "invalid @nest value",
 "invalid @prefix value",
 "invalid @propagate value",
 "invalid @protected value",
 "invalid @reverse value",
 "invalid @version value",
 "invalid base direction",
 "invalid base IRI",
 "invalid container mapping",
 "invalid context entry",
 "invalid context nullification",
 "invalid default language",
 "invalid IRI mapping",
 "invalid JSON literal",
 "invalid keyword alias",
 "invalid language map value",
 "invalid language mapping",
 "invalid language-tagged string",
 "invalid language-tagged value",
 "invalid local context",
 "invalid remote context",
 "invalid reverse property map",
 "invalid reverse property value",
 "invalid reverse property",
 "invalid scoped context",
 "invalid script element",
 "invalid set or list object",
 "invalid term definition",
 "invalid type mapping",
 "invalid type value",
 "invalid typed value",
 "invalid value object value",
 "invalid value object",
 "invalid vocab mapping",
 "IRI confused with prefix",
 "keyword redefinition",
 "loading document failed",
 "loading remote context failed",
 "multiple context link headers",
 "processing mode conflict",
 "protected term redefinition"
};

B. Open Issues
This section is non-normative.

 The following is a list of issues open at the time of publication.

 Issue 76: More compact @prefix defer-future-version
More compact @prefix.

 Issue 94: Expansion concept "key's term definition" is unclear with compact IRI keys defer-future-version
Expansion concept "key's term definition" is unclear with compact IRI keys.

 Issue 166: Relationship to the RDF/JS Dataset interface(s) defer-future-version
Relationship to the RDF/JS Dataset interface(s).

 Issue 380: Expansion does not take property-scoped contexts for nested properties into account defer-future-versionspec:editorialtest:needs testswr:spec-updated-partial
Expansion does not take property-scoped contexts for nested properties into account.

 Issue 391: Recursively nested properties and compaction defer-future-version
Recursively nested properties and compaction.

 Issue 435: relative iri compaction defer-future-versionspec:wontfixwr:pending
relative iri compaction.

C. Changes since 1.0 Recommendation of 16 January 2014
This section is non-normative.

 	The Expansion Algorithm
 has a special processing mode, based on
 the frameExpansion flag, to enable content associated with JSON-LD
 frames, which may not otherwise be valid JSON-LD documents.

 	An expanded term definition can now have an
 @context entry, which defines a context used for values of
 a property identified with such a term. This context is used
 in both the Expansion Algorithm and
 Compaction Algorithm.

 	A new § 7.3 Merge Node Maps is required
 for framing, to create a single graph from the default
 and named graphs.

 	An expanded term definition can now have an
 @nest entry, which identifies a term expanding to
 @nest which is used for containing properties using the same
 @nest mapping. When expanding, the values of an entry
 expanding to @nest are treated as if they were contained
 within the enclosing node object directly.

 	@container values within an expanded term definition may now
 include @id and @type, corresponding to id maps and type maps.

 	Both language maps and index maps may legitimately have an @none value, but
 JSON-LD 1.0 only allowed string values. This has been updated
 to allow (and ignore) @none values.

 	The JSON syntax has been abstracted into an internal representation
 to allow for other serialization formats that are functionally equivalent
 to JSON.

 	Preserved values are compacted using the properties of the referencing term.

 	The value for @container in an expanded term definition
 can also be an array containing any appropriate container
 keyword along with @set (other than @list).
 This allows a way to ensure that such entry values will always
 be expressed in array form.

 	Added support for the compactToRelative option to allow IRI compaction (§ 6.2 IRI Compaction)
 to document-relative IRIs to be disabled.

 	In JSON-LD 1.1, terms will be used as compact IRI prefixes
 when compacting only if
 a simple term definition is used where the value ends with a URI gen-delim character,
 or if their expanded term definition contains
 an @prefix entry with the value true. The 1.0 algorithm has
 been updated to only consider terms that map to a value that ends with a URI
 gen-delim character.

 	Term definitions now allow @container to include @graph,
 along with @id, @index and @set.
 In the Expansion Algorithm, this is
 used to create a named graph from either a node object, or
 objects which are values of entries in an id map or index map.
 The Compaction Algorithm allows
 specific forms of graph objects to be compacted back to a set of node objects,
 or maps of node objects.

 	Value Expansion will not turn native values
 into node objects.

 	The Term Selection algorithm has been
 updated to allow uses of containers for values which would otherwise not
 match. This is used in the Compaction
 Algorithm to use the @none keyword, or an alias, for
 values of maps for which there is no natural index. The Expansion Algorithm removes this indexing
 transparently.

 Additionally, see § D. Changes since JSON-LD Community Group Final Report.

D. Changes since JSON-LD Community Group Final Report
This section is non-normative.

 	Lists may now have items which are themselves lists.

 	The Deserialize JSON-LD to RDF Algorithm
 has been updated to ensure that only well-formed triples
 are emitted; previously, it only ensured that triples containing
 relative IRI references were excluded.

 	The API now adds an ordered
 option, defaulting to false This is used in algorithms to
 control iteration of map entry keys. Previously, the
 algorithms always required such an order. The instructions for
 evaluating test results have been updated accordingly.

 	The Generate Blank Node Identifier algorithm
 has been updated to remove the specifics of how new blank node
 identifiers are created.

 	Values of @type, or an alias of @type, may now have their @container set to @set
 to ensure that @type entries are always represented as an array. This
 also allows a term to be defined for @type, where the value MUST be a map
 with @container set to @set.

 	Updated the IRI Expansion algorithm so that
 if value contains a colon (:), but
 prefix is not a term, to only return value
 if it has the form of an IRI, otherwise fall through to
 the rest of the algorithm.

 	The use of blank node identifiers to label properties is obsolete,
 and may be removed in a future version of JSON-LD,
 as is the support for generalized RDF Datasets
 and thus the produceGeneralizedRdf option may be also be removed.

 	Added API steps to accept text/html as input,
 extracting either a specifically targeted script element,
 the first found JSON-LD script element,
 or all JSON-LD script elements.

 	Added contentType field to RemoteDocument.

 	Added support for protected contexts and term definitions.

 	Because scoped contexts can lead to contexts being reloaded, replace the
 recursive context inclusion error with a context overflow error.

 	Added support for "@type": "@none" in a term definition to prevent value compaction.

 	Added support for JSON literals.

 	Term definitions with keys which are of the form of an IRI or a compact IRI MUST NOT
 expand to an IRI other than the expansion of the key itself.

 	Consolidate RemoteDocument processing into the LoadDocumentCallback
 including variations on HTML processing.

 	The IRI Compaction algorithm may generate an error if the result is an
 IRI which could be confused with a compact IRI in the
 active context.

 	By default, all contexts are propagated when traversing node objects, other than
 type-scoped contexts. This can be controlled using the @propagate
 entry in a local context.

 	A context may contain a @import entry used to reference a remote context
 within a context, allowing JSON-LD 1.1 features to be added to contexts originally
 authored for JSON-LD 1.0.

 	The colliding keywords error is not issued for @type;
 instead, previous values of @type are prepended to any new values, when expanding.

 	A node object may include an included block,
 which is used to contain a set of node objects which are treated
 exactly as if they were node objects defined in an array including the containing
 node object.
 This allows the use of the object form of a JSON-LD document when there is more
 than one node object being defined, and where those node objects
 are not embedded as values of the containing node object.

 	A relative IRI reference has been added as a possible value for @vocab in
 a context. When this is set, vocabulary-relative IRI references, such as the
 entries of node objects, are expanded or compacted relative
 to the base IRI and the vocabulary mapping using string concatenation.

 	In the LoadDocumentCallback, if the retrieved content is not any JSON media type
 and there is a link header with rel=alternate and type=application/ld+json, redirect
 to that content.

 	Value objects, and associated context and term definitions have been updated to
 support @direction for setting the base direction of strings.

 	It is no longer required that language tags be normalized to lower case,
 other than for testing considerations.
 Language tags that are not valid according to [BCP47] are rejected.

 	The processing mode is now implicitly json-ld-1.1, unless set
 explicitly to json-ld-1.0.

 	Improve notation using IRI, IRI reference, and relative IRI reference.

 	Ignore terms and IRIs that have the form of a keyword ("@"1*ALPHA).

 E. Changes since Candidate Release of 12 December 2019
This section is non-normative.

 Note
All changes are editorial and do not affect the observable
 behavior of the API nor the expected test results.

 	Add application/xhtml+xml as an allowed media type in § 9.5.1 Process HTML,
 in the note in § 9.4.1 LoadDocumentCallback,
 and as a use of the profile API option.

 	Added add value, IRI expanding, and IRI compacting
 macros to reduce boilerplate in algorithmic language.

 	Improved algorithms in
 § 4.1 Context Processing Algorithm,
 § 4.2 Create Term Definition,
 § 2.1 Expansion,
 § 2.2 Compaction,
 § 6.3 Value Compaction,
 § 7.2 Node Map Generation,
 and § 8.1 Deserialize JSON-LD to RDF Algorithm.

 	When creating an i18n datatype or rdf:CompoundLiteral, language tags are
 normalized to lower case to improve interoperability between implementations.

 	Moved non-recursive portions algorithms
 into the JsonLdProcessor processing steps.

 	Fix some JsonLdOption initializers where defaults are null.
 Set default value for processingMode to json-ld-1.1.

 	Remove normative text for canonicalizing rdf:JSON literals and
 reference the rdf:JSON datatype of the syntax document
 for the conversion of the JSON Literals in § 8.6 Data Round Tripping.

 	Updated interfaces in § 9. The Application Programming Interface
 to use record,
 instead of dictionary,
 and to allow RemoteDocument to be used
 as a direct input, which resolves a Promise boundary issue.

 F. Changes since Candidate Release of 05 March 2020
This section is non-normative.

 Note
All changes are editorial and do not affect the observable
 behavior of the API nor the expected test results.

 	The inverse context is not passed explicitly as a parameter
 to the Term Selection,
 IRI compaction,
 and Value Compaction algorithms,
 but is retrieved from the inverse context field
 within an active context, and initialized as necessary.
 This simplifies calling sequences and better represents actual implementation experience.

 	Updated step 5.13 of the
 Context Processing algorithm
 to pass override protected
 and not pass validate scoped context
 to the Create Term Definition algorithm.

 	Move step 5.2.2 of the
 Context Processing algorithm
 to run before the subsequent step for checking remote contexts.

 	Updated step 11 of the
 Create Term Definition algorithm
 to use any boolean value of @protected, not just true.

 	Updated step 4.5 of the IRI Compaction algorithm
 to use @index for any value with an @index entry.

 	Update step 13.4.6.2 of the
 Expansion algorithm to pass
 null for active property, as included blocks
 do not define a relationship to a referencing node.

 	Update step 13.8.3.6 of the
 Expansion algorithm to pass
 true for the from map parameter to properly manage reverting
 active contexts.

 	Update step 11.1 of the
 Compaction Algorithm
 to pass false for propagate when calling the
 Context Processing algorithm.

 	Updated step 12.2.4 of the
 Compaction Algorithm
 to only look for @set if processing mode is json-ld-1.1.

 	Update step 12.8.6 of the
 Compaction Algorithm
 to clarify the value passed for element.

 	Update steps 12.8.9.6.3
 and 12.8.9.2.2 of the
 Compaction Algorithm
 to invoke the add value macro for adding remaining values back to compacted item.

 	Update step 12.8.10 of the
 Compaction Algorithm
 to add values to nest result instead of result
 as was originally intended.

 	Update step 2.2.1
 of § 7.3 Merge Node Maps to
 exclude @type, leaving it to the next step.
 This could cause type values from a node to be left out of the merge.

 	Added step 5.2.3
 to the Context Processing algorithm,
 which is added validate scoped context as a new
 optional argument, and passed to the
 Create Term Definition algorithm,
 which in turn uses it with the value false when recursively calling
 the Context Processing algorithm
 when validating a scoped context.

 	Added missing values for @container in the description of
 invalid container mapping.

 	Clarified step 3.13 in the
 Inverse Context Creation algorithm
 by moving the preceding step to 3.9.

 	Update substeps of 6.1.6
 in the Serialize RDF as JSON-LD Algorithm
 to update cl reference and not node.

 	Added § 1.4.2 Syntax Tokens and Keywords to describe
 the preserve keyword, which is only used for framing.

 G. Changes since Proposed Recommendation Release of 7 May 2020
This section is non-normative.

 	Removed remaining "at-risk" notes.

 	Update bibliographic reference for JCS to [RFC8785].

 	Changed [Exposed=(Window,Worker)] to [Exposed=JsonLd],
 which is declared as a global interface in order to expose the JsonLdProcessor interface
 for non-browser usage to address review suggestions.

 H. Acknowledgements
This section is non-normative.

 The editors would like to specially thank the following individuals for making significant
 contributions to the authoring and editing of this specification:

 	Timothy Cole (University of Illinois at Urbana-Champaign)

 	Gregory Todd Williams (J. Paul Getty Trust)

 	Ivan Herman (W3C Staff)

 	Jeff Mixter (OCLC (Online Computer Library Center, Inc.))

 	David Lehn (Digital Bazaar)

 	David Newbury (J. Paul Getty Trust)

 	Robert Sanderson (J. Paul Getty Trust, chair)

 	Harold Solbrig (Johns Hopkins Institute for Clinical and Translational Research)

 	Simon Steyskal (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	A Soroka (Apache Software Foundation)

 	Ruben Taelman (Imec vzw)

 	Benjamin Young (Wiley, chair)

 Additionally, the following people were members of the Working Group at the time of publication:

 	Steve Blackmon (Apache Software Foundation)

 	Dan Brickley (Google, Inc.)

 	Newton Calegari (NIC.br - Brazilian Network Information Center)

 	Victor Charpenay (Siemens AG)

 	Sebastian Käbisch (Siemens AG)

 	Axel Polleres (WU (Wirschaftsuniversität Wien) - Vienna University of Economics and Business)

 	Leonard Rosenthol (Adobe)

 	Jean-Yves ROSSI (CANTON CONSULTING)

 	Antoine Roulin (CANTON CONSULTING)

 	Manu Sporny (Digital Bazaar)

 	Clément Warnier de Wailly (CANTON CONSULTING)

 A large amount of thanks goes out to the JSON-LD Community Group participants who worked through many of the technical issues on the mailing list and the weekly telecons: Chris Webber, David Wood, Drummond Reed, Eleanor Joslin, Fabien Gandon, Herm Fisher, Jamie Pitts, Kim Hamilton Duffy, Niklas Lindström, Paolo Ciccarese, Paul Frazze, Paul Warren, Reto Gmür, Rob Trainer, Ted Thibodeau Jr., and Victor Charpenay.

I. References

 I.1
 Normative references

 	[BCP47]
	Tags for Identifying Languages. A. Phillips; M. Davis. IETF. September 2009. IETF Best Current Practice. URL: https://tools.ietf.org/html/bcp47
	[DOM]
	DOM Standard. Anne van Kesteren. WHATWG. Living Standard. URL: https://dom.spec.whatwg.org/
	[ECMASCRIPT]
	ECMAScript Language Specification. Ecma International. URL: https://tc39.es/ecma262/
	[HTML]
	HTML Standard. Anne van Kesteren; Domenic Denicola; Ian Hickson; Philip Jägenstedt; Simon Pieters. WHATWG. Living Standard. URL: https://html.spec.whatwg.org/multipage/
	[IEEE-754-2008]
	IEEE 754-2008 Standard for Floating-Point Arithmetic. Institute of Electrical and Electronics Engineers. 2008. URL: http://standards.ieee.org/findstds/standard/754-2008.html
	[INFRA]
	Infra Standard. Anne van Kesteren; Domenic Denicola. WHATWG. Living Standard. URL: https://infra.spec.whatwg.org/
	[JSON-LD10]
	JSON-LD 1.0. Manu Sporny; Gregg Kellogg; Marcus Langhaler. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-20140116/
	[JSON-LD11]
	JSON-LD 1.1. Gregg Kellogg; Pierre-Antoine Champin; Dave Longley. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11/
	[JSON-LD11-FRAMING]
	JSON-LD 1.1 Framing. Dave Longley; Gregg Kellogg; Pierre-Antoine Champin. W3C. 7 May 2020. W3C Proposed Recommendation. URL: https://www.w3.org/TR/json-ld11-framing/
	[LINKED-DATA]
	Linked Data Design Issues. Tim Berners-Lee. W3C. 27 July 2006. W3C-Internal Document. URL: https://www.w3.org/DesignIssues/LinkedData.html
	[promises-guide]
	Writing Promise-Using Specifications. Domenic Denicola. W3C. 9 November 2018. TAG Finding. URL: https://www.w3.org/2001/tag/doc/promises-guide
	[RDF-SCHEMA]
	RDF Schema 1.1. Dan Brickley; Ramanathan Guha. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf-schema/
	[RDF11-CONCEPTS]
	RDF 1.1 Concepts and Abstract Syntax. Richard Cyganiak; David Wood; Markus Lanthaler. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-concepts/
	[RDF11-MT]
	RDF 1.1 Semantics. Patrick Hayes; Peter Patel-Schneider. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/rdf11-mt/
	[RFC2045]
	Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies. N. Freed; N. Borenstein. IETF. November 1996. Draft Standard. URL: https://tools.ietf.org/html/rfc2045
	[RFC2119]
	Key words for use in RFCs to Indicate Requirement Levels. S. Bradner. IETF. March 1997. Best Current Practice. URL: https://tools.ietf.org/html/rfc2119
	[RFC3986]
	Uniform Resource Identifier (URI): Generic Syntax. T. Berners-Lee; R. Fielding; L. Masinter. IETF. January 2005. Internet Standard. URL: https://tools.ietf.org/html/rfc3986
	[RFC3987]
	Internationalized Resource Identifiers (IRIs). M. Duerst; M. Suignard. IETF. January 2005. Proposed Standard. URL: https://tools.ietf.org/html/rfc3987
	[RFC5234]
	Augmented BNF for Syntax Specifications: ABNF. D. Crocker, Ed.; P. Overell. IETF. January 2008. Internet Standard. URL: https://tools.ietf.org/html/rfc5234
	[RFC6839]
	Additional Media Type Structured Syntax Suffixes. T. Hansen; A. Melnikov. IETF. January 2013. Informational. URL: https://tools.ietf.org/html/rfc6839
	[RFC8174]
	Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words. B. Leiba. IETF. May 2017. Best Current Practice. URL: https://tools.ietf.org/html/rfc8174
	[RFC8259]
	The JavaScript Object Notation (JSON) Data Interchange Format. T. Bray, Ed.. IETF. December 2017. Internet Standard. URL: https://tools.ietf.org/html/rfc8259
	[RFC8288]
	Web Linking. M. Nottingham. October 2017. Proposed Standard. URL: https://tools.ietf.org/html/rfc8288
	[Turtle]
	RDF 1.1 Turtle. Eric Prud'hommeaux; Gavin Carothers. W3C. 25 February 2014. W3C Recommendation. URL: https://www.w3.org/TR/turtle/
	[WEBIDL]
	Web IDL. Boris Zbarsky. W3C. 15 December 2016. W3C Editor's Draft. URL: https://heycam.github.io/webidl/
	[XMLSCHEMA11-2]
	W3C XML Schema Definition Language (XSD) 1.1 Part 2: Datatypes. David Peterson; Sandy Gao; Ashok Malhotra; Michael Sperberg-McQueen; Henry Thompson; Paul V. Biron et al. W3C. 5 April 2012. W3C Recommendation. URL: https://www.w3.org/TR/xmlschema11-2/

 I.2
 Informative references

 	[cooluris]
	Cool URIs for the Semantic Web. Leo Sauermann; Richard Cyganiak. W3C. 3 December 2008. W3C Note. URL: https://www.w3.org/TR/cooluris/
	[JSON-LD10-API]
	JSON-LD 1.0 Processing Algorithms And API. Marcus Langhaler; Gregg Kellogg; Manu Sporny. W3C. 16 January 2014. W3C Recommendation. URL: https://www.w3.org/TR/2014/REC-json-ld-api-20140116/
	[RFC8785]
	JSON Canonicalization Scheme (JCS). A. Rundgren; B. Jordan; S. Erdtman. Network Working Group. June 2020. Informational. URL: https://www.rfc-editor.org/rfc/rfc8785

 ↑

nav.xhtml

Table of Contents

		1. Introduction		1.1 How to Read this Document

		1.2 Contributing

		1.3 Typographical conventions

		1.4 Terminology

		1.5 Example Conventions

		2. Features		2.1 Expansion

		2.2 Compaction

		2.3 Flattening

		2.4 RDF Serialization/Deserialization

		3. Conformance

		4. Context Processing Algorithms		4.1 Context Processing Algorithm

		4.2 Create Term Definition

		4.3 Inverse Context Creation

		4.4 Term Selection

		5. Expansion Algorithms		5.1 Expansion Algorithm

		5.2 IRI Expansion

		5.3 Value Expansion

		6. Compaction Algorithms		6.1 Compaction Algorithm

		6.2 IRI Compaction

		6.3 Value Compaction

		7. Flattening Algorithms		7.1 Flattening Algorithm

		7.2 Node Map Generation

		7.3 Merge Node Maps

		7.4 Generate Blank Node Identifier

		8. RDF Serialization/Deserialization Algorithms		8.1 Deserialize JSON-LD to RDF Algorithm

		8.2 Object to RDF Conversion

		8.3 List to RDF Conversion

		8.4 Serialize RDF as JSON-LD Algorithm

		8.5 RDF to Object Conversion

		8.6 Data Round Tripping

		9. The Application Programming Interface		9.1 The JsonLdProcessor Interface

		9.2 RDF Dataset Interfaces

		9.3 The JsonLdOptions Type

		9.4 Remote Document and Context Retrieval

		9.5 HTML Content Algorithms

		9.6 Error Handling

		10. Security Considerations

		11. Privacy Considerations

		12. Internationalization Considerations

		A. IDL Index

		B. Open Issues

		C. Changes since 1.0 Recommendation of 16 January 2014

		D. Changes since JSON-LD Community Group Final Report

		E. Changes since Candidate Release of 12 December 2019

		F. Changes since Candidate Release of 05 March 2020

		G. Changes since Proposed Recommendation Release of 7 May 2020

		H. Acknowledgements

		I. References		I.1
 Normative references

		I.2
 Informative references

Icons/w3c_main.png

scripts/TR/2016/fixup.js
/**
 * JS Extension for the W3C Spec Style Sheet *
 * *
 * This code handles: *
 * - some fixup to improve the table of contents *
 * - the obsolete warning on outdated specs *
 **/
(function() {
 "use strict";
 var ESCAPEKEY = 27;
 var collapseSidebarText = '← '
 + 'Collapse Sidebar';
 var expandSidebarText = '→ '
 + 'Pop Out Sidebar';
 var tocJumpText = '↑ '
 + 'Jump to Table of Contents';

 var sidebarMedia = window.matchMedia('screen and (min-width: 78em)');
 var autoToggle = function(e){ toggleSidebar(e.matches) };
 if(sidebarMedia.addListener) {
 sidebarMedia.addListener(autoToggle);
 }

 function toggleSidebar(on, skipScroll) {
 if (on == undefined) {
 on = !document.body.classList.contains('toc-sidebar');
 }

 if (!skipScroll) {
 /* Don't scroll to compensate for the ToC if we're above it already. */
 var headY = 0;
 var head = document.querySelector('.head');
 if (head) {
 // terrible approx of "top of ToC"
 headY += head.offsetTop + head.offsetHeight;
 }
 skipScroll = window.scrollY < headY;
 }

 var toggle = document.getElementById('toc-toggle');
 var tocNav = document.getElementById('toc');
 if (on) {
 var tocHeight = tocNav.offsetHeight;
 document.body.classList.add('toc-sidebar');
 document.body.classList.remove('toc-inline');
 toggle.innerHTML = collapseSidebarText;
 if (!skipScroll) {
 window.scrollBy(0, 0 - tocHeight);
 }
 tocNav.focus();
 sidebarMedia.addListener(autoToggle); // auto-collapse when out of room
 }
 else {
 document.body.classList.add('toc-inline');
 document.body.classList.remove('toc-sidebar');
 toggle.innerHTML = expandSidebarText;
 if (!skipScroll) {
 window.scrollBy(0, tocNav.offsetHeight);
 }
 if (toggle.matches(':hover')) {
 /* Unfocus button when not using keyboard navigation,
 because I don't know where else to send the focus. */
 toggle.blur();
 }
 }
 }

 function createSidebarToggle() {
 /* Create the sidebar toggle in JS; it shouldn't exist when JS is off. */
 var toggle = document.createElement('a');
 /* This should probably be a button, but appearance isn't standards-track.*/
 toggle.id = 'toc-toggle';
 toggle.class = 'toc-toggle';
 toggle.href = '#toc';
 toggle.innerHTML = collapseSidebarText;

 sidebarMedia.addListener(autoToggle);
 var toggler = function(e) {
 e.preventDefault();
 sidebarMedia.removeListener(autoToggle); // persist explicit off states
 toggleSidebar();
 return false;
 }
 toggle.addEventListener('click', toggler, false);

 /* Get <nav id=toc-nav>, or make it if we don't have one. */
 var tocNav = document.getElementById('toc-nav');
 if (!tocNav) {
 tocNav = document.createElement('p');
 tocNav.id = 'toc-nav';
 /* Prepend for better keyboard navigation */
 document.body.insertBefore(tocNav, document.body.firstChild);
 }
 /* While we're at it, make sure we have a Jump to Toc link. */
 var tocJump = document.getElementById('toc-jump');
 if (!tocJump) {
 tocJump = document.createElement('a');
 tocJump.id = 'toc-jump';
 tocJump.href = '#toc';
 tocJump.innerHTML = tocJumpText;
 tocNav.appendChild(tocJump);
 }

 tocNav.appendChild(toggle);
 }

 var toc = document.getElementById('toc');
 if (toc) {
 if (!document.getElementById('toc-toggle')) {
 createSidebarToggle();
 }
 toggleSidebar(sidebarMedia.matches, true);

 /* If the sidebar has been manually opened and is currently overlaying the text
 (window too small for the MQ to add the margin to body),
 then auto-close the sidebar once you click on something in there. */
 toc.addEventListener('click', function(e) {
 if(document.body.classList.contains('toc-sidebar') && !sidebarMedia.matches) {
 var el = e.target;
 while (el != toc) { // find closest <a>
 if (el.tagName.toLowerCase() == "a") {
 toggleSidebar(false);
 return;
 }
 el = el.parentElement;
 }
 }
 }, false);
 }
 else {
 console.warn("Can't find Table of Contents. Please use <nav id='toc'> around the ToC.");
 }

 /* Wrap tables in case they overflow */
 var tables = document.querySelectorAll(':not(.overlarge) > table.data, :not(.overlarge) > table.index');
 var numTables = tables.length;
 for (var i = 0; i < numTables; i++) {
 var table = tables[i];
 if (!table.matches('.example *, .note *, .advisement *, .def *, .issue *')) {
 /* Overflowing colored boxes looks terrible, and also
 the kinds of tables inside these boxes
 are less likely to need extra space. */
 var wrapper = document.createElement('div');
 wrapper.className = 'overlarge';
 table.parentNode.insertBefore(wrapper, table);
 wrapper.appendChild(table);
 }
 }

 /* Deprecation warning */
 if (document.location.hostname === "www.w3.org" && /^\/TR\/\d{4}\//.test(document.location.pathname)) {
 var request = new XMLHttpRequest();

 request.open('GET', 'https://www.w3.org/TR/tr-outdated-spec');
 request.onload = function() {
 if (request.status < 200 || request.status >= 400) {
 return;
 }
 try {
 var currentSpec = JSON.parse(request.responseText);
 } catch (err) {
 console.error(err);
 return;
 }
 document.body.classList.add("outdated-spec");
 var node = document.createElement("p");
 node.classList.add("outdated-warning");
 node.tabIndex = -1;
 node.setAttribute("role", "dialog");
 node.setAttribute("aria-modal", "true");
 node.setAttribute("aria-labelledby", "outdatedWarning");
 if (currentSpec.style) {
 node.classList.add(currentSpec.style);
 }

 var frag = document.createDocumentFragment();
 var heading = document.createElement("strong");
 heading.id = "outdatedWarning";
 heading.innerHTML = currentSpec.header;
 frag.appendChild(heading);

 var anchor = document.createElement("a");
 anchor.id = "outdated-note";
 anchor.href = currentSpec.latestUrl;
 anchor.innerText = currentSpec.latestUrl + ".";

 var warning = document.createElement("span");
 warning.innerText = currentSpec.warning;
 warning.appendChild(anchor);
 frag.appendChild(warning);

 var button = document.createElement("button");
 var handler = makeClickHandler(node);
 button.addEventListener("click", handler);
 button.innerHTML = "▾ collapse";
 frag.appendChild(button);
 node.appendChild(frag);

 function makeClickHandler(node) {
 var isOpen = true;
 return function collapseWarning(event) {
 var button = event.target;
 isOpen = !isOpen;
 node.classList.toggle("outdated-collapsed");
 document.body.classList.toggle("outdated-spec");
 button.innerText = (isOpen) ? '\u25BE collapse' : '\u25B4 expand';
 }
 }

 document.body.appendChild(node);
 button.focus();
 window.onkeydown = function (event) {
 var isCollapsed = node.classList.contains("outdated-collapsed");
 if (event.keyCode === ESCAPEKEY && !isCollapsed) {
 button.click();
 }
 }

 window.addEventListener("click", function(event) {
 if (!node.contains(event.target) && !node.classList.contains("outdated-collapsed")) {
 button.click();
 }
 });

 document.addEventListener("focus", function(event) {
 var isCollapsed = node.classList.contains("outdated-collapsed");
 var containsTarget = node.contains(event.target);
 if (!isCollapsed && !containsTarget) {
 event.stopPropagation();
 node.focus();
 }
 }, true); // use capture to enable event delegation as focus doesn't bubble up
 };

 request.onerror = function() {
 console.error("Request to https://www.w3.org/TR/tr-outdated-spec failed.");
 };

 request.send();
 }
})();

